期刊文献+

双向不敏卡尔曼滤波的无源定位算法 被引量:1

Forward-backward UKF for single-observer passive location
下载PDF
导出
摘要 针对不敏卡尔曼滤波算法在单站无源定位的应用中受初始状态误差和可观测条件等影响易产生滤波发散、收敛精度低、收敛速度慢的问题.提出一种双向平方根不敏卡尔曼滤波的无源定位算法.充分利用了平方根不敏卡尔曼滤波算法数值稳定性高的优点,采用后向平滑算法逐次修正状态估计值,从而提高了定位算法对初始状态的鲁棒性.试验结果验证了该算法的有效性. As the Unscented Kalman Filter(UKF) is sensitive to initial value and system observation, to enhance the robustness, increase the convergence speed and improve the locating accuracy of the unscented Kalman filter in the single observer passive Location, this study presented an improved forward-backward smoothing algorithm based on Square-Root Unscented Kalman Filter (SRUKF). To guarantee the stability of the filter algorithm, the square root of covariance instead of itself was used in the step estimation, and a more accurate state estimate as an initial condition can be obtained by backward smoothing to improve the robustness to the initial value. Simulation results show that the algorithm has better performance to UKF and SRUKF in the filter's stability, convergence velocity, positioning precision and the robustness to the initial value.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第2期267-271,共5页 Journal of Liaoning Technical University (Natural Science)
关键词 无源定位 不敏卡尔曼滤波 后向平滑 非线性滤波 状态估计 平方根 扩展卡尔曼滤波 稳定性 passive location Unscented Kalman Filter(UKF) backward-smoothing nonlinear filtering stateestimation square-root extend Falman filter robustness
  • 相关文献

参考文献10

  • 1孙仲康,郭福成编著..单站无源定位跟踪技术[M].北京:国防工业出版社,2008:480.
  • 2Juliet S J,Uhlman J K.Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422. 被引量:1
  • 3刘学,焦淑红.自适应迭代平方根UKF的单站无源定位算法[J].哈尔滨工程大学学报,2011,32(3):372-377. 被引量:10
  • 4Crassidis J,Junkins J.Optimal estimation of dynamic systems [M]. Boca Raton, Florida, USA:CRC Press, 2004:343-350. 被引量:1
  • 5Van Der Merwe R, Wan E A.. The square root unscented Kalman filter for state and parameter estimation [C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway, N J, USA: IEEE, 2001:3461 -3464. 被引量:1
  • 6曹轶之,隋立芬,黄贤源.基于核估计的滤波补偿法[J].辽宁工程技术大学学报(自然科学版),2010,29(1):120-123. 被引量:3
  • 7赵丽娜,曹伟,孙明,戴学丰.带有卡尔曼滤波的灰色补偿PID控制器设计[J].辽宁工程技术大学学报(自然科学版),2012,31(6):881-884. 被引量:4
  • 8Simo Sarkka.Unscented rauch-tung-striebel smoother[J].IEEE Transaction on Automatic Control,2008,53(3):845-849. 被引量:1
  • 9Hang Liu,Sameh Nassar,Naser El-Sheimy.Two-Filter Smoothing for Accurate INS/GPS Land-Vehicle Navigation in Urban Centers[J].IEEE Transaction on Vehicular Technology,2010,59(9):4 256-4 267. 被引量:1
  • 10占荣辉..基于空频域信息的单站被动目标跟踪算法研究[D].国防科学技术大学,2007:

二级参考文献22

  • 1杨元喜,张双成.导航解算中的系统误差及其协方差矩阵拟合[J].测绘学报,2004,33(3):189-194. 被引量:41
  • 2张双成,高为广.基于系统误差及其协方差阵拟合的抗差自适应滤波[J].地球科学与环境学报,2005,27(2):60-62. 被引量:7
  • 3JAZWINSKI A H. Stochastic Processes and Filtering Theory [M].NewYork: Mathematics in Science and Engineering, Academic Press, 1970. 被引量:1
  • 4SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics[M].New York:Joint American Control Conference,1969:769-774. 被引量:1
  • 5FAGIN S L.Recursive Linear regression theory, optimal filter theory and error analysis of optimal system [J].IEEE Int.Convent, Record, 1964, 12:216-240. 被引量:1
  • 6SORENSON H W, SACKS J E. Recursive fading memory filtering [J].Inform, SCI, 1971,3:101-119. 被引量:1
  • 7SCHAFFRIN B. On robust collocation in Sanso[C]//Proeeedings of the first Marussi Symp. On Mathematical Geodesy, Millano,1986:343 -361. 被引量:1
  • 8John Shawe-Taylor, Nello Cristianini. Kernel Methods for Pattern Analysis [M].England :Cambridge University Press, 2004:25-46. 被引量:1
  • 9Goulb, G.H., Wahba, M.H.G. Generalized cross-validation as a method for choosing a good ridge parameter[J].Technometrics, 1979, 21: 215-223. 被引量:1
  • 10ITO K, XIONG K. Gaussian filters for nonlinear filtering problems [ J ]. IEEE Transactions on Automatic Control, 2000, 45(5) :910-927. 被引量:1

共引文献14

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部