期刊文献+

无界区域上具可乘白噪音的Fitzhngh-Nagumo方程的渐近行为 被引量:1

The Asymptotic Behavior of Fitzhugh-Nagumo Systems with Multiplicative White Noise on Unbounded Domains
下载PDF
导出
摘要 主要研究了定义在无界区域上具可乘白噪音的Fitzhugh-Nagumo方程的渐近行为.首先运用Ornstein-Uhlenbeck变换,将Fitzhugh-Nagumo方程转换成带有随机参数的确定型系统,并生成了相应的随机动力系统.其次运用一致估计证明了所生成的随机动力系统的渐近性.最后,证明了该随机动力系统的随机吸引子的存在性. This paper is devoted to investigating the asymptotic behavior for Fitzhugh-Nagumo systems with multiplicative white noise on unbounded domains. Firstly, by using Ornstein-Uhlenbeck transformation, the Fitzhugh-Nagumo systems are transferred into a deterministic case with random parameter and generate the corresponding random dynamical system. Secondly, applying the uniform priori estimates to solutions, we prove the asymptotic compactness of the mentioned random dynamical system. Finally, the existence of a random attractor for this random dynamical system is established.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2014年第1期8-15,共8页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(11171280) 湖南省教育厅基金项目(12C0408)
关键词 随机Fitzhugh-Nagumo方程 随机吸引子 随机动力系统 Fitzhugh-Nagumo systems random attractor multiplicative white noise
  • 相关文献

参考文献14

  • 1WANG B. Random attractors for the stochastic Fitzhugh-Nagumo system on unbounded domains[J]. Nonlinear Anal, 2009,8: 2 811-2 828. 被引量:1
  • 2WANG Z, ZHOU S. Random attractors for the stochastic reaction-diffusion equation with multiplicative noise on unbounded do- mains[J]. J Math Anal Appl, 2011,384 ; 160- 172. 被引量:1
  • 3ARNOLD L. Random Dynamical Systems[M]. NewYork:Springer-Verlag, 1998. 被引量:1
  • 4BALL J M. Continuity properties and global attractors of gernerlized semiflows and the Naiver-Stokes equations[J]. J Nonlinear Sci, 1997,7z475-502. 被引量:1
  • 5BALL J M. Global attractors for damped semilinear wave equations[J]. Discrete Contin Dyn Syst, 2004,10:31-52. 被引量:1
  • 6BABIN A V, VISHISK M L Attractors of Evolution Equations[M]. Amsterdam; Norht-Holland, 1992. 被引量:1
  • 7ADAMS R. Sobolev Spaces[M]. New York.. Academic Press, 1975. 被引量:1
  • 8BATES P W, LISEI H, LU K. Attractors for the stochastic lattice dynamical systems[J]. Stoch Dyn, 2006(6):1-21. 被引量:1
  • 9BATES P W, LU K, WANG B. Random attractors for stochastic reaction-diffusion equations on unbounded domains[J]. J Differ- ential Equations, 2009. 被引量:1
  • 10CARABALLO T, LANGA J A, ROBISION J C. A stochastic pitchfork bifurcation in a reaction-diffusion equations[J]. Proc R Soc Lond A, 2001,457:2 041-2 061. 被引量:1

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部