期刊文献+

参数型Littlewood-Paley算子在带非双倍测度Morrey空间上的有界性(英文) 被引量:1

Boundedness of Parametrized Littlewood-Paley Operators with Non-doubling Measures on Morrey Spaces
下载PDF
导出
摘要 假定μ是仅满足一个增长条件的Radon测度,即存在一个正常数C使得对所有的x∈Rd,r>0以及对某个固定的n∈(0,d]都成立μ(B(x,r))≤Crn.对适当的参数ρ和λ,证明了参数型g*λ函数M*,ρλ和参数型Marcinkiewicz积分Mρ在Morrey空间Mp q(k,μ)上是有界的. Let μ be a non-negative Radon measure on R^d which only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r))≤Cr^n for all x∈R^d, r〉0 and some fixed n∈(0,d]. We will prove that for suitable indexesρandλthe parametrized gλ^*function Mλ^* ρand Mρare bounded on M q^p (k, μ) spaces.
出处 《新疆大学学报(自然科学版)》 CAS 2014年第1期52-56,共5页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(11161044 and 11261055)
关键词 非双倍测度 MORREY空间 参数型Littlewood-Paley算子 参数型Marcinkiewicz算子 Non-doubling measures Morrey space Parametrized Littlewood-Paley Operators Parametrized Marcinkiewicz integral
  • 相关文献

参考文献2

二级参考文献6

  • 1Sawano Y, Tanaka H. Morrey spaces for non-doubling measures[J]. Acta. Mathematica Sinica, 2005,21(6):1535- 1544. 被引量:1
  • 2Yang Dongyong, Meng Yah. Boundedness of Some Operators and Commutators in Morrey Spaces with Non Doubling Measures[J]. Journal of Beijing Normal University: Natural Scince, 2004,40(6):725-731. 被引量:1
  • 3Hu Guoen, Lin Haibo, Yang Dachun. Marcinkiewicz Integrals with Non Doubling Measures[J]. Integral Equation and Operator Theory, 2007,58(2):205-238. 被引量:1
  • 4Tolsa X. BMO, H^1 and Calderon-Zygmund operators for non doubling measures[J]. Mathematica Annual, 2001,319:89-149. 被引量:1
  • 5Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of American Mathematical Society, 1958,88:430-466. 被引量:1
  • 6YasuoKOMORI.Calderón—Zygmund Operators on the Predual of a Morrey Space[J].Acta Mathematica Sinica,English Series,2003,19(2):297-302. 被引量:5

共引文献24

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部