期刊文献+

粗糙表面接触面积和承载规律的研究 被引量:5

Research on contact area and load carrying capacity between coarse surfaces
下载PDF
导出
摘要 基于有限元方法研究了磨削粗糙表面的真实接触面积和承载分布规律.首先通过表面轮廓仪获得两个45钢磨削表面的轮廓数据,建立了粗糙表面的二维有限元接触模型,通过计算获得了两个粗糙表面在0~1 MPa法向载荷作用下的接触变形,与法向载荷及变形的试验结果比较,计算结果与实验结果有较好的一致性.此外,还将该模型计算的真实接触面积与接触电阻试验获得的真实接触面积进行了比较,发现二者数据也能够较好地吻合,表明该模型能够用于粗糙表面微观接触性质的研究.通过该模型发现,接触点的承载不均匀,而且不均匀的程度随载荷升高而降低,说明在低载荷条件下,真实的接触面积并不能反映接触表面的承载能力.计算结果还显示,真实接触区的面积很小,并且只出现在轮廓高度平均值以上的位置,轮廓高度在平均值附近及其以下的高度分布并不影响接触的状态和性质,表面轮廓符合正态分布应该不是GW模型的必要条件. Based on finite element method,real contact area and load distribution laws between grinding coarse surfaces are investigated.The profile data of two grinding surfaces of steel 45 are obtained by profilometer and then finite element two dimension model of the coarse surfaces is built up.By computation of finite element,contact deformations between two coarse surfaces are obtained when normal load doesn't exceed 1MPa,which are compared to experimental results and it is found that computing results have better consistency with experimental results.In addition,the real contact areas from the finite element model are compared to the real contact areas obtained by contact resistance method and it is found that computing results are in agreement with experimental results,which shows that the model may be used to research microscopic contact characteristics between coarse surfaces.By the model,it is also found that loads of contact points are not evenly distributed and that uneven degree of distribution of loads decreases with an increase in load,which shows that under lower load,real contact area doesn't reflect load carrying capacity.Furthermore,computing results show that real contact area is very small and that contact points only occur at the position above average of profile height,which mean that height distribution close to or below average of profile height can not affect status and characteristics of contact and that the normal distribution of surface profile heights may not be necessary condition of GW model.
出处 《西安理工大学学报》 CAS 北大核心 2014年第1期22-27,共6页 Journal of Xi'an University of Technology
基金 国家重点基础研究发展计划资助项目(2009CB724406) 国家科技重大专项基金资助项目(2009ZX04014-032) 西安理工大学科技创新计划资助项目(102-210916) 陕西省教育厅科学研究计划资助项目(2013JK1026)
关键词 粗糙表面 接触 面积 承载 有限元 coarse surface contact area load finite element
  • 相关文献

参考文献16

  • 1黄玉美,付卫平.结合面法向动态特性参数研究[J].机械工程学报,1993,29(3):74-78. 被引量:48
  • 2田红亮,朱大林,秦红玲.机械结合面接触模型的研究进展及存在的问题[J].机械工程与技术,2013,(2):1-10. 被引量:1
  • 3Greenwood J A, Williams J B. Contact of nominally flat surfaces[J]. P. Roy. Soc. Lond. : A Mat. , 1966, 295 (1442) : 300-319. 被引量:1
  • 4Chang W R,Etsion I, Bogy D B. An elastic-plastic mod- el for the contact of rough surfaces[J]. ASME J. Tri- bol, 1987, 109(2) :257-263. 被引量:1
  • 5Majumdar A, Bhushan B. Fractal model of elastic-plas- tic contact between rough surfaces[J]. ASME J. Tribol, 1991, 113(1):1-11. 被引量:1
  • 6杨国庆,熊美华,洪军,刘会静,王飞.3D粗糙表面的数字化表征与接触特性分析[J].西安交通大学学报,2012,46(11):58-63. 被引量:21
  • 7Komvopoulos K,Choi D H. Elastic finite element analy- sis of multi-asperity contact[J]. ASME Journal of Tri- bology, 1992,114 :823-831. 被引量:1
  • 8杨楠,陈大融,孔宪梅.多粗糙峰弹塑性接触的有限元分析[J].摩擦学学报,2000,20(3):202-206. 被引量:24
  • 9Sahoo P, Ghosh N. Finite element contact analysis of fractal surfaces[J]. J. Phys: D Appl. Phys. , 2007, 40 (14) : 4245-4252. 被引量:1
  • 10Pei L, Hyun S, Molinari J F, et al. Finite element modeling of elasto-plastic contact between rough sur- faces[J]. J. Mech. Phys. Solids, 2005, 53 (11): 2385-2409. 被引量:1

二级参考文献36

  • 1佟瑞庭,刘更,刘天祥.二维多粗糙峰涂层表面的弹塑性接触力学分析[J].机械科学与技术,2007,26(1):21-24. 被引量:11
  • 2http: //www. fossil, energy, gov/programs/oilgas/microhole/ index, html [ OL]. 被引量:2
  • 3W R Chang, I Etsion, D B Bogy. An elastic-plastic model for the contact of rough surfaces [J]. ASME J Tribol, 1987, 109: 257-263. 被引量:1
  • 4K Komvopoulos, D H Choi. Elastic finite element analysis of multi-asperity contacts [ J ]. ASME Journal of Tribology, 1992, 114:823-831. 被引量:1
  • 5S Kueharski, T Klimczak, A Polijaniuk, et al. Finite-Element Model for the Contact of Rough Surfaces [J].Wear, 1994, 177: 1-13. 被引量:1
  • 6L Kogut, I Etsion. Elastic-plastic contact analysis of sphere and a rigid flat [J]. ASME J Appl Mech, 2002, 69:657 - 663. 被引量:1
  • 7Pei L, Hyun S, Molinari J F, et al. Finite element modeling of elasto-plastic contact between rough surfaces [ J ]. J Mech Phys Solids, 2005, 53:2385-2409. 被引量:1
  • 8Prasanta Sahoo, Niloy Ghosh. Finite element contact analysis of fractal surfaces [ J ]. J Phys D : Appl Phys, 2007, 40 : 4245 - 425. 被引量:1
  • 9Liu G, Zhu J, Yo L, et al. Elasto-Plastic Contact of Rough Surfaces [J]. J STLE Tribology Transactions, 2001, 44: 437 - 443. 被引量:1
  • 10Hyun S, Pei L, Molinari J F, et al. Finite element analysis of contact between elastic self-affine surfaces [ J ]. Phy Rev E, 2004, 70026117 (1-12). 被引量:1

共引文献110

同被引文献49

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部