期刊文献+

分数阶延迟微分方程的样条配置方法 被引量:5

Spline Collocation Method for Fractional Delay Differential Equation
原文传递
导出
摘要 首次利用三次样条配置方法采用直接法求解了一类非线性分数阶延迟微分方程初值问题,并给出了方法的局部截断误差和若干数值算例.数值结果表明方法求解分数阶延迟微分方程初值问题是非常有效的,结果对于未来研究分数阶延迟微分方程的数值方法具有重要的意义. In this paper, we discuss the cubic spline collocation method with two parameters for solving initial value problem (IVPs) of fractional delay differential equations (FDDEs). A theorem of the local truncation error is also obtained. Some numerical examples verify that the cubic spline collocation method is robust for IVPs of FDDEs. This work is very helpful for study of numerical method for IVPs of FDDEs.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第6期247-254,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金天元项目(11226320 11326096) 广东省自然科学基金(S2013010013212 S2013010013212) 惠州学院自然科学基金(2012YB15)
关键词 分数阶延迟微分方程初值问题 三次样条配置方法 局部截断误差 initial value problem fractional delay differential equations cubic spline collo-cation method local truncation error
  • 相关文献

参考文献14

  • 1Lubich C. Discretized fractional calculus[J]. SIAM Journal on Mathematical Analysist 1986(17): 704-719. 被引量:1
  • 2Diethelm K, and Walz G. Numerical solution of fractional order differential equation by extrapola- tion[J]. Numer. Algorithms, 1997(16): 231-253. 被引量:1
  • 3Diethelm K, Ford N J, and Freed Alan D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002(29): 3-22. 被引量:1
  • 4Diethelm K, Ford N J, and Reed A D. Detailed error analysis for a fractional Adams method[J]. Numerical Algorithms, Kluwer Academic Publishers, 2004(36)(1): 31-52. 被引量:1
  • 5E1-Mesiry A E M, E1-Sayed A M A, and E1-Saka H A A. Numerical methods for multi-term fractional (arbitrary) orders differential equations[J]. Appl Math Comput, 2005, 160(3): 683-699. 被引量:1
  • 6Brunner H. Collocation methods for Volterra integral and related functional differential equa- tions[M]. Combridge University Press, 2004. 被引量:1
  • 7Brunner H, Pedas A, and Vainikko G. A spline collocation method for linear Volterra integro- differential equations[J]. BIT, 2001, 41(5): 891-900. 被引量:1
  • 8Diethelm K, and Neville J Ford. Analysis of Fractional Differential Equations[M]. Springer, 2003. 被引量:1
  • 9Arvet Pedas, Enn Tamme.. Spline collocation methods for linear multi-term fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2011(236): 167-176. 被引量:1
  • 10Pedas A, Tamme E. On the convergence of spline collocation methods for solving fractional differ- ential equations[J]. J Comput Appl Math, 2011(235): 3502-3514. 被引量:1

同被引文献10

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部