摘要
基于Riemann-Liouville分数阶导数的Radau ⅡA方法高阶逼近格式,构造了求解非线性分数阶微分方程的Radau ⅡA方法,给出了方法的相容性、收敛性和稳定性分析。数值试验表明所构造的方法是有效的。
Based on a high order approximation of Radau IIA methods for Riemann-Liouville fractional derivatives, a class of high order Radau IIA methods for solving nonlinear fractional differential equations were constructed. Consistency, convergence and stability analysis of these methods were given. Numerical experiments show that the proposed methods are efficient for solving nonlinear fractional differential equations.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2011年第10期2075-2078,共4页
Journal of System Simulation
基金
湖南省科技厅科研项目(2010JT4054)
国家自然科学基金(10871164,10971175)