期刊文献+

非线性分数阶微分方程的Radau ⅡA方法 被引量:1

Radau ⅡA Methods for Nonlinear Fractional Differential Equations
下载PDF
导出
摘要 基于Riemann-Liouville分数阶导数的Radau ⅡA方法高阶逼近格式,构造了求解非线性分数阶微分方程的Radau ⅡA方法,给出了方法的相容性、收敛性和稳定性分析。数值试验表明所构造的方法是有效的。 Based on a high order approximation of Radau IIA methods for Riemann-Liouville fractional derivatives, a class of high order Radau IIA methods for solving nonlinear fractional differential equations were constructed. Consistency, convergence and stability analysis of these methods were given. Numerical experiments show that the proposed methods are efficient for solving nonlinear fractional differential equations.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2075-2078,共4页 Journal of System Simulation
基金 湖南省科技厅科研项目(2010JT4054) 国家自然科学基金(10871164,10971175)
关键词 分数阶微分方程 Radau IIA方法 相容性 收敛性 稳定性 fractional differential equation Radau IIA method consistency convergence stability
  • 相关文献

参考文献11

  • 1Lubich C. Discretized Fractional Calculus [J]. SIAM Journal on Mathematical Analysis (S0036-1429), 1986, 17(3): 704-719. 被引量:1
  • 2Lubich C. Convolution Quadrature and Discretized Operational Caculus I [J]. Numerische Mathematik (S0029-599X), 1988, 52(2): 129-145. 被引量:1
  • 3Lubich C. Convolution Quadrature and Discretized Operational Caculus II [J]. Numerische Mathematik (S0029-599X), 1988, 52(4): 413-425. 被引量:1
  • 4Lubich C, Ostermann A. Runge-Kutta Methods for Parabolic Equations and Convolution Quadrature [J]. Mathematics of Computation (S0025-5718), 1993, 60(201): 105-131. 被引量:1
  • 5Lubich C. Convolution Quadrature Revisited [J]. BIT Numerical Mathematics (S0006-3825), 2004, 44(3): 503-514. 被引量:1
  • 6Diethelm K, Ford N J, Freed A D. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations [J]. Nonlinear Dynamics (S0924-090X), 2002, 29(1): 3-22. 被引量:1
  • 7Diethelm K, Walz G. Numerical Solution of Fractional Order Differential Equation by Extrapolation [J]. Numerical Algorithms (S1017-1398), 1997, 16(3): 231-253. 被引量:1
  • 8Diethelm K, Ford N J, Freed A D. Detailed Error Analysis for a Fractional Adams Method [J]. Numerical Algorithms (S1017-1398), 2004, 36(1 ):31-52. 被引量:1
  • 9Lin R, Liu F W. Fractional High Order Methods for the Nonlinear Fractional Ordinary Differential Equation [J]. Nonlinear Analysis (S0362-546X), 2007, 66 (4): 856-869. 被引量:1
  • 10Podlubny I. Fractional Differential Equations [M]. New York, USA: Academic Press, 1999. 被引量:1

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部