期刊文献+

On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature 被引量:2

On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature
原文传递
导出
摘要 We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature. We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp. Neumann) eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp. a segment). Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated. These generalize the corresponding results in recent literature.
出处 《Science China Mathematics》 SCIE 2014年第5期1057-1070,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11171253) the Natural Science Foundation of Ministry of Education of Anhui Province(Grant No.KJ2012B197)
关键词 Finsler-Laplacian the first eigenvalue Ricci curvature S curvature Finsler流形 Ricci曲率 第一特征值 Dirichlet边界条件 加权 拉普拉斯算子 等距 下界
  • 相关文献

参考文献16

  • 1Bao D W, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. New York: Springer-Verlag, 2000. 被引量:1
  • 2Chen B. Some geometric and analysis problems in Finsler geometry. Report of Postdoctoral Research, Zhejiang University, 2010, 4. 被引量:1
  • 3Ge Y, Shen Z M. Eigenvalues and eigenfunctions of metric measure manifolds. Proc London Math Soc, 2001, 82: 725-746. 被引量:1
  • 4Hang F B, Wang X D. A remark on Zhong-Yang's eigenvalue estimate. Int Math Res Not, 2007, 18: Art ID rnm064 9pp. 被引量:1
  • 5Li P, Yau S T. Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace Operator Proc Sympos Pure Math, XXXVL Providence, RI: Amer Math Soc, 1980, 205-239. 被引量:1
  • 6Lichnerowicz A. Geometrie des groupes de transforamtions. In: Travaux et Recherches Mathemtiques, Ⅲ. Paris Dunod. 1958. 被引量:1
  • 7Obata M. Certain conditions for a Riemannian manifold tobe isometric with a sphere. J Math Soc Japan, 1962, 14 333-340. 被引量:1
  • 8Ohta S. Finsler interpolation inequalities. Calc Vat Partial Differential Equations, 2009, 36:211-249. 被引量:1
  • 9Ohta S, Sturm K T. Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds. ArXiv:1105.0983. 被引量:1
  • 10Shen Z M. Lectures on Finsler Geometry. Singapore: World Scientific Publishing, 2001. 被引量:1

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部