期刊文献+

ESTIMATE ON LOWER BOUND OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD 被引量:3

ESTIMATE ON LOWER BOUND OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD
原文传递
导出
摘要 The author gives an optimum estimate of the first eigenvalue of a compact Riemannian manifold. It is shown that let M be a compact Riemannian manifold, then the first eigenvalue λ<sub>1</sub> of the Laplace operator of M satisfies α<sub>1</sub>+max{0,-(n-1)K}≥π<sup>2</sup>/d<sup>2</sup> where d is the diameter of M and (n-1)K is the negative lower bound of the Ricci curvature of M. The author gives an optimum estimate of the first eigenvalue of a compact Riemannian manifold. It is shown that let M be a compact Riemannian manifold, then the first eigenvalue λ_1 of the Laplace operator of M satisfies α_1+max{0,-(n-1)K}≥π~2/d^2 where d is the diameter of M and (n-1)K is the negative lower bound of the Ricci curvature of M.
作者 蔡开仁
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1991年第3期267-271,共5页 数学年刊(B辑英文版)
  • 相关文献

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部