期刊文献+

LS-WTSVM的遥感多光谱影像云检测 被引量:7

Cloud detection for remote sensing multi-spectral image based on least squares wavelet twin support vector machines
下载PDF
导出
摘要 研究基于最小二乘小波孪生支持向量机(least squares wavelet twin support vector machines,简称LS-WTSVM)的遥感多光谱影像云检测.首先根据云在不同波段中大气的辐射特点,结合Landsat7 ETM+影像数据的光谱特性获得云像元的光谱特征,再通过提取每个图像块的灰度共生矩阵得到相应像元的纹理结构特征,根据像元的光谱特性和纹理结构特征构造特征向量,最后利用最小二乘小波孪生支持向量机多分类算法进行Landsat7 ETM+影像像元的云检测,实现不同类型云区的多分类识别.仿真实验结果表明,该算法能准确地检测出多光谱影像中的厚云和薄云. In this paper, a novel cloud detection method for remote sensing multi-spectral image based on least squares wavelet twin support vector machines (LS-WTSVM) was proposed. Firstly, the spectral feature of the cloud pixel was acquired on the basis of the atmospheric radiation characteristics of cloud in different bands and the spectral characteristics of Landsat7 ETM + image data. Then the texture feature of the corresponding pixel was obtained by extracting the gray level co-occurrence matrix of the each image block. Using the spectral properties and texture feature of pixels to construct the feature vectors and training LS-WTSVM multi-classification algorithm to detect the Landsat7 ETM+ image cloud pixels, different types of cloud was multi-classified and recognized. Experimental results showed that this method could detect the thick cloud and thin cloud of multi- spectral image accurately.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第1期48-55,共8页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(61172127) 安徽省教育厅重点科研计划资助项目(KJ2010A021) 安徽省自然科学基金资助项目(1208085QF104)
关键词 Landsat7影像 云检测 多分类 最小二乘小波孪生支持向量机 小波核 Landsat7 images cloud detection multi - classification least squares wavelet twinsupport vector machines wavelet kernel
  • 相关文献

参考文献15

  • 1Long C N, Sabburg J M, Calbo J, et al. Retrieving cloud characteristics from ground-based daytime color all-sky images [ J]. Journal of Atmospheric and Oceanic Technology,2006,23:633-652. 被引量:1
  • 2Vittorio A D, Emery W. An automated dynamic threshold cloud-masking algorithm for daytime AVHRR images over land [ J ]. IEEE Transactions on Geoseience and Remote Sensing,2002,40 ( 8 ) : 1682-1694. 被引量:1
  • 3杨俊,吕伟涛,马颖,姚雯,李清勇.基于自适应阈值的地基云自动检测方法[J].应用气象学报,2009,20(6):713-721. 被引量:25
  • 4Irish R R, Barker ] L, Goward S N, et al. Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm [ J ]. Photogrammetric Engineering & Remote Sensing, 2006,72 (10) : 1179-1188. 被引量:1
  • 5Irish R R. Landsat7 automatic cloud cover assessment[ J]. SPIE, 2000, 4049: 348-355. 被引量:1
  • 6Oreopoulos L, Wilson M J, V6xnai T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands [ J ]. IEEE Geoscience and Remote Sensing Letters,2011,8 ( 4 ) : 597-601. 被引量:1
  • 7Christodoulou C I, Michaelides S C, Pattichis C S. Multifeature texture analysis for the classification of clouds in satellite imagery[ J 1. IEEE Transactions on Geoscience and Remote Sensing,2003,41 (11 ) :2662-2668. 被引量:1
  • 8宋小宁,赵英时.MODIS图象的云检测及分析[J].中国图象图形学报(A辑),2003,8(9):1079-1083. 被引量:65
  • 9金炜,俞建定,符冉迪,岑雄鹰,尹曹谦.利用密度聚类支持向量机的气象云图云检测[J].光电子.激光,2010,21(7):1079-1082. 被引量:5
  • 10Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29( 5 ) :905-910. 被引量:1

二级参考文献31

共引文献92

同被引文献64

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部