期刊文献+

基于区域逐步分析的集合变分资料同化方法 被引量:2

Ensemble variational data assimilation method based on regional successive analysis scheme
原文传递
导出
摘要 集合变分数据同化方法的同化效果对集合样本容量具有很强的依赖性,研究发现此问题的出现是因为其计算过程中分析增量被表示为集合扰动向量或其展开正交基向量的线性组合.这样的处理方法虽然避免了计算梯度而引入伴随模式,但是因为物理控制变量个数远大于集合样本容量,就会导致物理量的同化分析值对集合样本容量很敏感.根据此原因,提出了区域逐步分析方法,减小了同化分析区域内物理变量个数与集合样本容量数之间的比值,使问题得到解决.利用浅水方程模式进行资料同化数值试验表明,基于区域逐步分析的集合变分资料同化方法可以得到较好的结果,能明显提高同化的精度. The ensemble variational data assimilation method may be subject to significant uncertainties due to the size of forecast ensemble. We found that this problem occurs because the analysis increment of this method is expressed as a linear combination of ensemble perturbation vectors or expansion of the orthogonal basis vectors. Though this method avoids introducing adjoint model while calculating the gradient of object function, the number of physical control variables is much larger than the sample size of forecast ensemble, which causes the assimilation results to be sensitive to the number of ensemble members. For this reason, the regional successive analysis scheme of ensemble variational method is proposed. By this scheme, the ratio between the number of physical control variables in analysis region and the sample size is decreased, so that it is expected that the problem can be solved. The results of numerical experiments using shallow water model show that the regional successive analysis scheme can give better assimilation results than traditional method, and the analysis precision is improved appreciably.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期449-456,共8页 Acta Physica Sinica
基金 江苏省自然科学基金(批准号:BK20131065) 中国博士后科学基金(批准号:20110490185) 国家自然科学基金(批准号:41175090,41375106,41105065,41205073) 气象海洋学院基础理论研究基金资助的课题~~
关键词 区域逐步分析 集合变分 资料同化 regional successive analysis, ensemble variational method, data assimilation
  • 相关文献

参考文献7

二级参考文献61

共引文献74

同被引文献30

  • 1Buehner M, Houtekamer P L, Charette C, et al. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observa- tion experiments.Mon. Wea. Rev., 2010, 138: 1550-1566. 被引量:1
  • 2Hamill T M, Whitaker J S, Snyder C, Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter.Mon. Wea. Rev., 2001, 129: 2776-2790. 被引量:1
  • 3Lorenc A. The potential of the ensemble Kalman filter for NWP-a comparison with 4DVar.Quart. J. Roy. Meteor. Soc., 2003, 129: 3183-3204. 被引量:1
  • 4WANG X, Snyder C, Hamill T M. On the theoretical equivalence of differently proposed ensernble--3DVAR hybrid analysis schemes. Mon. Wea. Rev., 2007, 135: 222-227. 被引量:1
  • 5WANG X, Barker D, Snyder C, et al. A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. Rev., 2008, 136: 5116-5131. 被引量:1
  • 6WANG X, Bishop C H, Snyder C, et al. A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II : real observa- tion experiments. Mon. Wea. Rev., 2008, 136: 5132-5147. 被引量:1
  • 7WANG X, Parrish D, Kleist D, et al. GSI 3DVar-based ensem- ble-variational hybrid data assimilation for NCEP global forecast system: Single resolution experiments. Mon. Wea. Rev., 2013, 141 (11) : 4098-4117. 被引量:1
  • 8Clayton A M, Lorenc A C, Barker D M. Operational implementa- tion of a hybrid ensemble/4D-Var global data assimilation system at the met office.Quarterly Journal of the Royal Meteorological So- ciety, 20"12. doi: 10.1002/qj.2054. 被引量:1
  • 9WANG X. Application of the WRF hybrid ETKF-3Dvar data as- similation system for hurricane track forecasts. Weather and Fore- casting, 2011, 26: 868-884. 被引量:1
  • 10Lorenc A C. Optimal nonlinear objective analysis.Q.J.R. Meteo- rol. Soc., 1988, 114: 205-240. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部