期刊文献+

生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究 被引量:4

Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors
原文传递
导出
摘要 设计并制作了结构尺寸为毫米量级的AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器,采用数值分析的方法分析了器件传感区域长度与宽度比值及待测物调控二维电子气(2DEG)距离与感测信号之间的关系,给出了结构尺寸为毫米量级的AlGaN/GaN HEMT生物传感器的设计依据,以不同浓度的前列腺特异性抗原(PSA)为待测物,对制作的AlGaN/GaN HEMT生物传感器进行了初步测量,测试结果表明,在50 mV的电压下,毫米量级的AlGaN/GaN HEMT生物传感器的对PSA的探测极限低于0.1 pg/ml.实验表明毫米量级的AlGaN/GaN HEMT生物传感器具有灵敏度高,易于集成等优点,具备良好的应用前景. In order to enhance the performance of A1GaN/GaN high electron mobility transistor (HEMT) biosensor, millimeter grade AIGaN/GaN HEMT structure have been designed and successfully fabricated. Factors influencing the capability of the A1GaN/GaN HEMT biosensor are analyzed. UV/ozone is used to oxidize GaN surface and then 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer can be bound to the sensing region. This serves as a binding layer in the attachment of prostate specific antibody (anti-PSA) for prostate specific antigen detection. The millimeter grade biomolecule-gated GaN/A1GaN HEMT sensor shows a quick buffer solution is added to the antibody-immobilized sensing response when the target prostate specific antigen in a area. The detection capability of this biomolecule-gate sensor estimated to be below 0.1 pg/ml level using a 2 ~ 1.5 mm2 sensing area, which is the best result of GaN/A1GaN HEMT biosensor for PSA detection till now. The electrical result of the biomolecule-gated GaN/A1GaN HEMT biosensor suggests that this biosensor might be a useful tool for the prostate cancer screening.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期35-40,共6页 Acta Physica Sinica
基金 国家自然科学基金青年科学基金(批准号:61104226) 国家重大科学研究计划项目(2010CB934700)资助的课题~~
关键词 二维电子气 高电子迁移率晶体管 生物传感器 前列腺特异性抗原 two-dimensional electron gas, high electron mobility transistor, biosensor, prostate specific antigen
  • 相关文献

参考文献16

  • 1薛伟2012硕士学位论文(北京:中国科学院研究生院). 被引量:1
  • 2张进成,郑鹏天,董作典,段焕涛,倪金玉,张金凤,郝跃2009物理学报583409. 被引量:2
  • 3林宗翰2006硕士学位论文(台南:国立成功大学). 被引量:1
  • 4Sun J D, Qin H, Lewis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M, Zhang B S 2012 Appl. Phys. Lett. 100 173513. 被引量:1
  • 5Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504. 被引量:1
  • 6Hu W D, Wang L, Chen X S, Guo N, Miao J S, Yu A Q, Lu V 2013 Opt. Quant Electron 45 713. 被引量:1
  • 7Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans- actions on Electron Devices 59 1393. 被引量:1
  • 8Xu Z, Wang J Y, Cai Y, Liu J Q, Yang Z, Li X P, Wang M J, Yu M, Xin B, Wu W G, Ma X H, Zhang J C, Hao Y 2014 IEEE Electron Device Letters 35 33. 被引量:1
  • 9Kang B S, Wang H T, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L, Linthicum K J 2007 Appl. Phys. Lett. 91 112106. 被引量:1
  • 10Chen K H, Wang H W, Kang B S, Chang C Y, Wang Y L, Lele T P, Ren F, Pearton S J, Dabiran A, Osinsky A, Chow P P 2008 Sensors and Actuators B 134 386. 被引量:1

共引文献1

同被引文献9

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部