期刊文献+

一类分数阶微分方程边值问题解的存在唯一性 被引量:1

Existence and Uniqueness of Solutions for Boundary Value Problem of Fractional Differential Equation
下载PDF
导出
摘要 研究一类Caputo型分数阶微分方程边值问题,运用Banach压缩映射原理和广义Lipschitz条件,通过计算Green函数,得到其解存在唯一性. In this paper, the boundary value problem of fractional differential equation of Caputo is investigated. With the help of the Banach contraction mapping theory and generalized Lipschitz condition, the existence and uniqueness of positive solutions are obtained by calculating paternity Green function.
出处 《河南科学》 2014年第3期321-324,共4页 Henan Science
基金 河南省自然科学基金(122300410130) 河南工业大学科学研究基金项目(2012YJCX63)
关键词 BANACH压缩映射原理 分数阶微分方程边值问题 解存在唯一性 the Banach contraction mapping theory the boundary value problem of fractional differentialequation: existence and uniqueness of solutions
  • 相关文献

参考文献5

  • 1Xiong Y, Zhong L W, Wei D. Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer, Simulat, 2012, 17: 85-92. 被引量:1
  • 2王翠菁,刘文斌,张金陵.非线性分数阶微分方程边值问题解的唯一性[J].河南科技大学学报(自然科学版),2013,34(1):85-88. 被引量:8
  • 3晏祥玉,周激流.分数阶微积分在医学图像处理中的应用[J].成都信息工程学院学报,2008,23(1):38-41. 被引量:10
  • 4Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential Equations [J]. Electronic Journal of Differential Equations, 2006, 36: 1-12. 被引量:1
  • 5Xiong Y, Zhong L W, Wei D. Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations [J]. Commun Nonlinear Sci Numer, Simulat, 2012, 17: 85-92. 被引量:1

二级参考文献16

  • 1刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 2郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282. 被引量:2
  • 3RaVel C.Gonzalez,Richard E.阮秋琦,阮宇智译.Woods数字图像处理(第二版)[M].北京:电子工业出版社.2005. 被引量:1
  • 4Keith B. Oldham, Jerome Spanier, Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order[ M]. New York and London: Academic Press, 1974. 被引量:1
  • 5S, G. Samko, A. A. Kilbas, O. I. Marichev. Fractional Integrals and Derivatives, Theory and Applications [ M], Gordon and Breach, 1993, 被引量:1
  • 6Adam Loverro. Fractional Calculus History[ M]. Definitions and Applications for the Engineer,2004. 被引量:1
  • 7Chu J F,Lin X N,Jiang D Q ,et al. Agarwal, Positive Solutions for Second-order Superlinear Repulsive Singular Neumann Boundary Value Problems[ J]. Positivity ,2008,12:555 - 569. 被引量:1
  • 8Yuan C J, Jiang D Q,O' Regan D. Existence and Uniqueness of Positive Solutions for Fourth-order Nonlinear Singular Continuous and Discrete Boundary Value Problems[J]. Applied Mathematics and Computation,2008,203:194 -201. 被引量:1
  • 9Bai Z B. Positive Solutions of Some Nonlocal Fourth-order Boundary Value Problem [ J]. Applied Mathematics and Computation ,2010,215:4191 - 4197. 被引量:1
  • 10辛怡,白雪霏,李勤.分数阶傅里叶联合变换相关在指纹识别中的应用[C]//中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集.2010. 被引量:1

共引文献15

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部