期刊文献+

关于Newton法的Kantorovich型定理及其优函数

Concerning Kantorovich-type Theorem of Newton's Method and Its Majorants
原文传递
导出
摘要 本文研究Newton法的Kantorovich型定理的特点及其对Newton法的半局部收敛性研究的思想方法,论述广义Lipschitz条件下的Kantorovich型定理的概括性和统一性.同时,在理论上当x_0取定时,针对每一个满足广义Lipschitz条件的光滑算子,给出优函数的一个构造方法. In this paper, the characteristics of Kantorovich-type theorem of Newton's method and the thoughtway on semilocal convergence properties of Newton's method are studied. The generality and the unity of Kantorovich-type theorem under the generalized Lipschitz condition are discussed. According to each smooth operator satisfying generalized Lipschitz condition when an initial guess x0 has been given, a construction method of the majorant is obtained theoretically.
作者 谢治州
出处 《数学进展》 CSCD 北大核心 2012年第6期641-654,共14页 Advances in Mathematics(China)
基金 贵州省科技厅自然科学基金项目(No.黔科合J字[201212310)
关键词 NEWTON法 Kantorovich型定理 半局部收敛 优函数 广义Lipschitz条件 Newton's method Kantorovich-type theorem semilocal convergence majorant general Lipschitz condition
  • 相关文献

参考文献6

二级参考文献34

  • 1[1]KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. New York: Pergamon, 1982. 被引量:1
  • 2[2]ORTEGA J M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970. 被引量:1
  • 3[3]ARGYROS I K. Remarks on the convergence of Newton's method under Holder continuity conditions[J]. Tamkang J Math, 1992, 23(2): 269-277. 被引量:1
  • 4[4]ROKNE J. Newton's method under mild differentiability conditions with error analysis [J].Numer Math, 1972, 18(2): 401-412. 被引量:1
  • 5[5]ARGYROS I K. The Newton-Kantorovich method under mild differentiability conditions and the Ptak error estimates[J]. Monatsh Math, 1990, 101(1):175-193. 被引量:1
  • 6[6]APPELL J, DE PASCALE E, LYSENKO L V, et al. New results on Newton-Kantorovich approximations with applications to nonlinear integral equations[J]. Numer Funct Anal Optimit, 1997, 18(1): 1-17. 被引量:1
  • 7[7]HERNANDEZ M A. Relaxing convergence conditions for Newton's method[J]. J Math Anal Appl, 2000,249(2): 463-475. 被引量:1
  • 8[8]HUANGZhang-da. A note on the Kantorovich theorom for Newton iteration [J]. J Comput Appl Math, 1993, 47(2): 211-217. 被引量:1
  • 9[9]GUTIERREZJ M. A new semilocal convergence theorem for Newton's method [J]. J Comput Appl Math, 1997, 79(1): 131-145. 被引量:1
  • 10[10]ORTEGA J M. The Newton-Kantorovich theorem[J]. Amer Math Monthly, 1968, 75(2): 658-660. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部