期刊文献+

基于微分进化算法的销齿传动多目标优化设计

The multi-objective optimization design for pin gear transmission based on differential evolution
下载PDF
导出
摘要 为缩短销齿传动的设计周期,降低产品成本,依据弹性流体动力润滑理论和齿轮啮合原理建立销齿传动的冷胶合强度条件。以齿间最小油膜厚度最大(倒数最小)和销齿传动中心距最小作为设计的追求目标,摈弃传统的多目标优化设计方法,利用修正的微分进化多目标优化算法对范例进行分析计算。优化过程及结果表明,修正的微分进化多目标优化算法能够有效地提高产品的综合经济技术指标。 To shorten the design cycle of the pin gear transmission and reduce the product cost, it is crucial to establish the cold scuffing strength conditions of pin gear transmission according to the the- ory of elastic hydrodynamic lubrication and the principle of gear engagement. The highest minimum oil film thickness among teeth and the minimum center distance were set as the pursuing goal of de- sign while abandoning the traditional multi-objective optimization design method. The example was analyzed and calculation by the modified multi-objective optimization algorithms based on differential evolution. The optimized process and result showed that the modified multi-objective optimization al- gorithms could increase effectively the products' synthesize economical and technical indexes.
出处 《青海大学学报(自然科学版)》 2014年第1期5-9,共5页 Journal of Qinghai University(Natural Science)
关键词 销齿传动 微分进化算法 多目标优化 弹性流体动力润滑 pin gear transmission differential evolution algorithm modified multi-objective optimi-zation theory of elastic hydrodynamic lubrication
  • 相关文献

参考文献13

二级参考文献20

  • 1雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 2刘杨松.机械设计的模糊学方法[M].北京:机械工业出版社,1997.. 被引量:2
  • 3机械设计手册联合编写组.机械设计手册(中册),第二版[M].北京:化学工业出版社,1988.. 被引量:1
  • 4J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms[C].In:John J Grefenstette ed.Proc of the 1st Int'l Conf on Genetic Algorithms.Mahwah:Lawrence Erlbaum Associates,Inc,1985.93-100 被引量:1
  • 5J Horn,N Nafpliotis,D E Goldberg.A niched Pareto genetic algorithm for multiobjective optimization[C].In:Proc of the 1st IEEE Conf on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87 被引量:1
  • 6E Zitzler,L Thiele.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Trans on Evolutionary Computation,1999,3(4):257 -271 被引量:1
  • 7N Srinivas,K Deb.Multiobjective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248 被引量:1
  • 8E Zitzler,M Laumanns,L Thiele.SPEA2:Improving the strength Pareto evolutionary algorithm[R].Swiss Federal Institute of Technology.Tech Rep:103,2001 被引量:1
  • 9K Deb,A Pratap,S Agarwal,et al.A fast and elitist multiobjective genetic algorithm:NSGA2 Ⅱ[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197 被引量:1
  • 10R Storn,K Price.Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359 被引量:1

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部