期刊文献+

一种改进的自适应重采样粒子滤波算法 被引量:10

Particle Filter Algorithm Based on Improved Adaptive Resampling
下载PDF
导出
摘要 针对粒子滤波跟踪算法中重采样所引起的粒子多样性缺失问题,提出了一种自适应粒子滤波重采样方法。首先将粒子权值进行分类,中等权值粒子保持不变,大、小权值粒子进行权值优化组合,其次对优化组合后的小部分粒子进行系统重采样。最后对粒子的权值及粒子的复制次数分别进行比较运算。试验结果表明,改进后的粒子滤波算法不仅提高了机动目标跟踪的运算效率,而且还有效提高了跟踪的稳定性,目标跟踪更加准确。 To solve the problem of particle lack of diversity in particle filter resampling track algorithm, a particle filter algorithm based on adaptive sampling methods is presented. First, the particle weight classification, medium weight particles remain unchanged, large and small particles weights by optimized combination of weights, followed a small part of the optimization particle by system resampling. Finally, the copy number of particles in the right amount and particle compare operations. The test results show that the improved particle filter algorithm not only improves the operational efficiency of maneuvering target tracking, but also improves the stability of tracking, targeting more accurate.
出处 《光电工程》 CAS CSCD 北大核心 2014年第4期35-40,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61272043) 应急通信重庆市重点实验室开放课题(CQKLEC 20120504)
关键词 粒子滤波 重采样 权值 优化组合 粒子多样性 particle filter resampling weight optimal combination diversity among the particles
  • 相关文献

参考文献6

二级参考文献103

共引文献176

同被引文献81

  • 1纪元法,施浒立,孙希延.一种Strobe相关器及其多径抑制性能研究[J].宇航学报,2007,28(5):1094-1099. 被引量:15
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3TALHA M, STOLKIN R. Particle filter tracking of cam- ouflaged targets by adaptive fusion of thermal and visible spectra camera data[J]. IEEE Sensors Journal, 2014, 1 (14): 159-166. 被引量:1
  • 4ZHANG MIAOHUI, XIN MING, YANG JIE. Adaptive multi-cue based particle swarm optimization guided parti- cle filter tracking in infrared videos[J]. Neurocomputing, 2013,12(122) : 163-171. 被引量:1
  • 5CARON F, DAVY M, DUFLOS E, et al. Particle filtering for multisensor data fusion with switching observation models:Application to land vehicle positioning[J]. IEEE Transactions on Signal Processing, 2007, 55 (6) : 2703- 2719. 被引量:1
  • 6RIGATOS GG. Particle filtering for state estimation in nonlinear industrial systems[J]. IEEE Transactions on In- strumentation and Measurement, 2009, 58 (11) 3885- 3900. 被引量:1
  • 7DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3 ) 197-208. 被引量:1
  • 8MININNO E, NERI F. Memetic compact differential evo- lution for cartesian robot control[J]. IEEE Computational Intelligence Magazine, 2010,5 (2) : 54-65. 被引量:1
  • 9STORN R, PRICE K. Differential evolution--a simple and efficient heuristic for global optimization over contin- uous spaces[J]. Journal of Global Optimization, 1997, 11 (4) :341-359. 被引量:1
  • 10PARK S, HWANG JP, KIM E, et al. A new evolutionary particle filter for the prevention of sample impoverish- ment[J]. IEEE Transactions on Evolutionary Computa- tion, 2009,13 (4) : 801-809. 被引量:1

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部