期刊文献+

基于压缩感知的粒子滤波跟踪算法 被引量:2

Particle filtering tracking based on compressive sensing
下载PDF
导出
摘要 针对运动目标跟踪存在的目标遮挡和光照变化问题,提出一种基于压缩感知的粒子滤波跟踪算法。将改进的压缩感知跟踪算法提取的特征融合到粒子滤波跟踪框架中,并对压缩感知提取的特征和原始粒子滤波中的颜色特征进行可信度判定,能够较好地处理图像序列中由于目标遮挡和光照变化所带来的影响。此算法在公开数据库中进行测试,实验结果表明,提出的算法与已有改进压缩感知跟踪算法和粒子滤波跟踪算法相比,鲁棒性更好,能准确实时地对目标进行跟踪。 To deal with the target occlusion problem and illumination changes in moving target tracking, a particle filtering algorithm based on compressive sensing is proposed. The extracted features are added by com- pressive sense of the improved compressive tracking (CT) algorithm into the framework of particle filtering tracking. The credibility of extracted features including the color features of original particle filtering and com- pressive sensing features is judged, which deals with the target occlusion effects and illumination changes. The algorithm is tested in public database and experimental results show that the proposed algorithm brings about better robustness and tracks targets accurately in real time in comparison with the improved CT algorithm and particle filtering algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第11期2617-2622,共6页 Systems Engineering and Electronics
基金 国家科技支撑计划(2014BAH10F00 2012BAH01F01-01)资助课题
关键词 运动目标跟踪 粒子滤波 压缩感知 可信度判定 moving target tracking particle filter compressive sensing credibility judge
  • 相关文献

参考文献15

  • 1赵钦君,张勇,赵东标.一种尺度和旋转自适应的目标跟踪算法[J].中南大学学报(自然科学版),2013,44(6):2354-2360. 被引量:4
  • 2Oron S, Bar^Hillel A, Levi D, et al. Locally orderless tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recog-nition ,2012: 1940 - 1947. 被引量:1
  • 3Nummiaro K,Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J], Image and Vision Computing , 2003, 21(1): 99-110. 被引量:1
  • 4Mei X,Ling H. Robust visual tracking and vehicle classificationvia sparse representation[J]. IEEE Trans, on Pattern Analysisand Machine Intelligence y 33(11) : 2259 - 2272. 被引量:1
  • 5Hess R, Fern A. Discriminatively trained particle filters for complexmulti-object tracking[C] // Proc. of the IEEE Conference on Com-puter Vision and Pattern Recognition, 2009 : 240 - 247. 被引量:1
  • 6Zhang K, Zhang L,Yang M H. Real-time compressive tracking[C3//Proc. of the 12th European Conference on Computer Vision,2012: 864- 877. 被引量:1
  • 7朱秋平,颜佳,张虎,范赐恩,邓德祥.基于压缩感知的多特征实时跟踪[J].光学精密工程,2013,21(2):437-444. 被引量:48
  • 8胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 9Sanjeev A M,Maskell S, Gordon N,et al. A tutorial on particlefilters for online nonlinear/non-Gaussian Bayesian tracking [J],IEEE Trans, on Signal Processing ,2002, 50(2) : 174 ~ 188. 被引量:1
  • 10Pj uric P M, Kotecha J H, Zhang J,et al. Particle filtering [J].IEEE Trans. on Signal Processing Magazine, 2003 *20(5) :19 - 38. 被引量:1

二级参考文献31

  • 1贾静平,柴艳妹,赵荣椿.一种健壮的目标多自由度Mean Shift序列图像跟踪算法[J].中国图象图形学报,2006,11(5):707-713. 被引量:10
  • 2王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 3WANG S, LU H CH, YANG F, etal.. Superpix- el tracking [C]. Compute Vision (ICCV), 2011: 1323-1330. 被引量:1
  • 4ORON S, AHARON B H, LEVI D, et al.. Local- ly orderless tracking [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Con- ference, 2012. 被引量:1
  • 5KWON J, LEE K M. Tracking of a non-rigid object via patch-based dynamic appearance modeling and a- daptive basin hopping Monte Carlo sampling [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2009,1208-1215. 被引量:1
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. On line learning of robust object detectors during unsta hie tracking [C]. Computer Visiotl Workshops ( IC CV Workshops), 2009 : 1417-1424. 被引量:1
  • 7GRABNER H, GRABNER M, BISCHOF H. Real time tracking via on-line boosting [C]. Proceedings of British Machine Vision Conference, 2006, 1: 47-56. 被引量:1
  • 8ADAM A, RIVLIN E, SHIMSHON L. Robust frag- ments-based tracking using the integral histogram [ C ]. Computer Vision and Pattern Recognition,IEEE Computer Society Conference, 2006 : 798- 805. 被引量:1
  • 9NEJHUM S M S, HO J, YANG M H. Visual tracking with histograms and articulating blocks [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2008 : 1-8. 被引量:1
  • 10YANG J CH, YU K, HUANG T. Supervised Translation-Invariant sparse coding [C]. Computer Vision and Pattern Recognition (CVPR), 2010: 3517-3524. 被引量:1

共引文献341

同被引文献27

  • 1耿文东.编队目标跟踪综述[c]//第十届全国雷达学术年会.北京:国防工业出版社,2008:367-371. 被引量:7
  • 2王欢,任明武,杨静宇.一种多特征融合的粒子滤波跟踪新算法[J].计算机工程与应用,2007,43(25):21-24. 被引量:7
  • 3Pratt W K.数字图像处理[M].邓鲁华,张延恒译.北京:机械工业出版社,2005:299-325. 被引量:6
  • 4张晶炜,熊伟,何友.基于数据压缩的多传感器多假设算法[J].北京航空航天大学学报,2007,33(12):1448-1451. 被引量:8
  • 5PENG Z H, SUN L, CHEN J, et al. Path Planning of Multiple UAVs L0w-Altitude Penetration Based on Improved Multi-Agent Coevolutionary Algorithm[C: //30th Chinese Control Conference, Yantai: IEEE, 2011:4056-4061. QIN Zhen, SHELTON C R. Improving Multi-Target Tracking via Social Groupingl-C://25th IEEE Confer- ence on Computer Vision and Pattern Recognition, Providence, Rhode Island: IEEE' 2012 : 1972-1978. 被引量:1
  • 6TRAN A, MANZANERA A. A Versatile Object Tracking Algorithm Combining Particle Filter and Generalised Hough Transform E C: // International Conference on Image Processing Theory, Tools and Applications, Orleans, France:IEEE, 2015:105-110. 被引量:1
  • 7ZHOU H, GAO Y, YUAN G, et al. Adaptive Multi- ple Cues Integration for Particle Filter Tracking[C']// IET International Radar Conference, Hangzhou:IET, 2015:1-6. 被引量:1
  • 8JIN Y, DING Y, HAO K, et al. An Endocrine- Based Intelligent Distributed Cooperative Algorithm for Target Tracking in Wireless Sensor Networks [J]. Soft Computing, 2015, 19(5) :1427-1441. 被引量:1
  • 9BEARD M, REUTER S, GRANSTROM K, et al. Multiple Extended Target Tracking with Labeled Random Finite Sets[J]. IEEE Trans on Signal Pro- cessing, 2016, 64(7) :1638-1653. 被引量:1
  • 10BEARD M, VO B T, VO B N. Bayesian Multi-Tar- get Tracking with Merged Measurements Using La- belled Random Finite Sets[J]. IEEE Trans on Signal Processing, 2015, 63(6): 1433-1447. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部