期刊文献+

Electronic and transport properties of V-shaped defect zigzag MoS_2 nanoribbons

Electronic and transport properties of V-shaped defect zigzag MoS_2 nanoribbons
下载PDF
导出
摘要 Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices. Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calcu- lations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期557-561,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.21103232,51272291,and 11174371)
关键词 transport property zigzag MoS2 nanoribbons V-shaped defect FIRST-PRINCIPLES transport property, zigzag MoS2 nanoribbons, V-shaped defect, first-principles
  • 相关文献

参考文献44

  • 1Tawinan C and Walter R L L 2012 Phys.Rev.B 85 205302. 被引量:1
  • 2Fornarini L,Stirpe F and Scrosati B 1981 Solar Energy Mater.5 107. 被引量:1
  • 3Zong X,Yan H J,Wu G P,Ma G J,Wen F Y,Wang L and Li C 2008 J.Am.Chem.Soc.130 7176. 被引量:1
  • 4Xiang Q J,Yu J G and Jaroniec 2012 J.Am.Chem.Soc.134 6575. 被引量:1
  • 5Hu K H,Hu X G,Wang J,Xu Y F and Han C L 2012 Tribol.Lett.47 79. 被引量:1
  • 6Tian L,Zhou Q L,Zhao K,Shi Y L,Zhao D M,Zhao S Q,Zhao H,Bao R M,Zhu S M,Miao Q and Zhang C L 2011 Chin.Phys.B 20 010703. 被引量:1
  • 7Eda G,Yamaguchi H,Voiry D,Fujita T,Chen M W and Chhowalla M 2011 Nano Lett.11 5111. 被引量:1
  • 8Coleman J N,Lotya M,O'Neill A,Bergin S D,King P J,Khan U,Young K,Gaucher A,De S,Smith R J,Shvets I V,Arora S K,Stanton G,Kim H Y,Lee K,Kim G T,Duesberg G S,Hallam T,Boland J J,Wang J J,Donegan J F,Grunlan J C,Moriarty G,Shmeliov A,Nicholls R J,Perkins J M,Grieveson E M,Theuwissen K,McComb D W,Nellist P D and Nicolosi V 2011 Science 331 568. 被引量:1
  • 9Lee Y H,Zhang X Q,Zhang W J,Chang M T,Lin C T,Chang K D,Yu Y C,Qang J T W,Chang C S,Li L J and Lin T W 2012 Adv.Mater.24 2320. 被引量:1
  • 10Smith R J,King P J,Lotya M,Wirtz C,Khan U,De S,O'Neill A,Duesberg G S,Grunlan J C,Moriarty G,Chen J,Wang J Z,Minett A I,Nicolosi V and Coleman J N 2011 Adv.Mater.23 3944. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部