摘要
Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.
Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.
基金
Project supported by the China Postdoctoral Science Foundation(No.201104619)
the Fund of Shaanxi Provincial Educational Department (No.2010JK775)