期刊文献+

关于Orlicz凸体的收敛性的注(英文)

NOTES ON THE CONVERGENCE OF ORLICZ CONVEX BODIES
下载PDF
导出
摘要 本文研究了Orlicz投影体和Orlicz质心体的性质.利用几何分析的方法,获得了Orlicz投影算子和Orlicz质心算子的连续性. In this paper, we investigate the characters of Orlicz projection body and Orlicz centroid body. By geometric analysis, we obtain the continuities of the Orlicz projection operator and Orlicz centroid operator.
出处 《数学杂志》 CSCD 北大核心 2014年第2期235-242,共8页 Journal of Mathematics
基金 Supported by Science and Technology Foundation of Guizhou(2012gz10256) Visiting Scholar Foundation in Southwestern University the Science and Technology Research of Chongqing Municipal Education Commission(KJ130614)
关键词 Orlicz投影体 Orlicz质心体 收敛性 Orlicz projection body Orlicz centroid body convergence
  • 相关文献

参考文献16

  • 1Campi S, Gronchi P. The Lp-Busemann-Petty centroid inequality[J]. Adv. Math., 2002, 167: 128- 141. 被引量:1
  • 2Campi S, Gronchi P. On the reverse Lp-Busemann-Petty centroid inequality[J]. Mathematika, 2002, 49: 1-11. 被引量:1
  • 3Gardner R. Geometric tomography[M]. New York: Cambridge Univ. Press, 1995. 被引量:1
  • 4Haberl C, Schuster F E. General Lp affine isoperimetric inequalities[J]. J. Differential Geom., 2009, 83: 1-26. 被引量:1
  • 5Haberl C, Schuster F E. Asymmetric affine Lp Sobolev inequalities[J]. J. ~nct. AnM., 2009, 257: 641-658. 被引量:1
  • 6Haberl C, Schuster F E, Xiao J. An asymmetric affine P61ya- Szeg5 principle[J]. Math. Ann., 2012, 352: 517-542. 被引量:1
  • 7Haberl C, Lutwak E, Yang D, Zhang G. The even Orlicz Minkowski problem[J]. Adv. Math., 2010, 2424: 2485-2515. 被引量:1
  • 8Ludwig M, Reitzner M. A classification of SL(n) invariant valuations[J]. Ann. of Math., 2010, 172: 1223-1271. 被引量:1
  • 9Lutwak E. The Brunn-Minkowski-Firey theory I, mixed volumes and the Minkowski problem[J]. J. Differential Geom., 1993, 38: 131-150. 被引量:1
  • 10Lutwak E. The Brunn-Minkowski-Firey theory II, affine and geominimal surface areas[J]. Adv. Math., 1996, 118: 244-294. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部