期刊文献+

Sylvester型泛函的极值问题

Extremal Problems for Sylvester Type Functionals
下载PDF
导出
摘要 给出一种新的Sylvester型泛函A(K)的定义.运用影子系统,研究A(K)的极值问题.当K为椭球时,A(K)取得最小值.在平面上,当K为三角形时,A(K)取得最大值.对称情形的极值凸体为平行四边形. This paper defines a new Sylvester type functional A (K). Using the method of shadow systems, the extremal problems of A(K) are studied. When K is a ellipsoid, A (K) attains its minimum value. In a plane, A (K) attains its maximum value when K is a triangle. When K is symmetric, the corresponding example is parallelogram.
作者 王广廷
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期376-378,共3页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10971128) 上海市教委重点资助项目(09ZZ94)
关键词 Sylvester型泛函 影子系统 Orlicz质心体 Sylvester type functional shadow system Orlicz centroid body
  • 相关文献

参考文献11

  • 1BLASCHKE W. Uber affine geometrie XI: lfisung des "ierpunktproblems" yon sylvester aus der theorie der geometrischen wahrscheinlichkeiten [ J ]. Leipziger Berichte, 1917, 69:309-317. 被引量:1
  • 2GROEMER H. On some mean value associated with a randomly selected simplex in a convex set [ J ]. Pac J Math, 1973, 45:525-533. 被引量:1
  • 3GROEMER H. On the mean value of the volume a randomly polytope in a convex set [ J ]. Arch Math, 1974, 25:86-90. 被引量:1
  • 4SCHOPF P. Gewichtete volum smittelwerte yon simplices, welche zufallig in einem konvexen Krper des Rn gewahlt warden [J]. Mh Math, 1977, 83:331-337. 被引量:1
  • 5DALLA L, LARMAN D G. Volumes of a random polytope in a convx set [ M ] /// GRITZMANN P, STURMFELS B. DIMACS: series in discrete mathematics and theoretical computer science. Washington : American Mathematics Society, 1991 : 175-180. 被引量:1
  • 6GIANNOPOULOS A A. On the mean value of the area of a random polygon in a plane convex body [ J ]. Mathematika, 1992, 39:279-290. 被引量:1
  • 7LUTWAK E, YANG D, ZHANG G. Orlicz centroid bodies [ J]. J Differential Geom, 2010, 84:365-387. 被引量:1
  • 8ROGERS C A, SHEPHARD G C. Some extremal problems for convex bodies [J]. Mathematika, 1958, 5:93-102. 被引量:1
  • 9SHEPHARD G C. Shadow systems of convex bodies [ J ]. Israel J Math, 1964, 2:229-236. 被引量:1
  • 10LI A, LENG G. A new proof of the Orlicz Busemann- Petty centroid inqualities [ J ]. Proc AMS, 2011, 139: 1473-1481. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部