期刊文献+

膜反应器固定化米根霉发酵产富马酸的工艺研究 被引量:3

Fumaric Acid Fermentation by Immobilized Rhizopus oryzae with Biofilm Reactor
原文传递
导出
摘要 以膜反应器固定化米根霉发酵产富马酸为研究对象,以Na2CO3为中和剂,考察固定化米根霉在5L搅拌式发酵罐中的发酵特征,采用智能可视化软件(IVOS)优化发酵工艺条件。结果表明,在80g/L初始糖浓及最优工艺下,富马酸产量、生产速率及转化率分别为21.1g/L、0.25g/(L·h)和28%;采用40g/L初始糖浓及连续批次发酵工艺时,富马酸产量、生产速率及转化率最高分别为10.8 g/L、0.36g/(L·h)和27%。搅拌式反应器中,固定化米根霉的膜反应器比表面积有限,以及菌膜的空间阻隔效应对传质传氧的限制作用,显著影响了富马酸的生产强度和转化率。因此,亟需发掘新的固定化方法及反应器形式,达到既解决米根霉形态控制问题,又有助于生产性状提升的目标。 The production of fumaric acid was optimized using immobilized Rhizopus oryzae with biofilm reactor and neutralized with Na2CO3 in 5L stirred tank reactor. Visualization method (IVOS) was used to optimize the process for fumaric acid production. Under the optimized condition (80g/L total glucose), the best results were fumaric acid titer of 21.10g/L, the volumetric productivity of 0.25 g/L ~ h and the yield of 28% , respectively; in the continuous batch fermentation condition(4Og/L total glucose), the best results were fumaric acid titer of 10.8 g/L,yield and volumetric productivity of fumarate were 27% and 0.36 g/L · h, respectively. Owing to the limitation of specific surface area of biofilm and its blocking mass transfer, biofilm reactor could not give an effective fumaric acid production. Future prospects for improvement of fumaric acid production include developing new methods for immobilized cell and bioreactor.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2014年第2期93-97,共5页 China Biotechnology
基金 国家"863"计划(2011AA02A206) 国家自然科学基金(21076104 21106065) 江苏省普通高校研究生科研创新计划(CXLX13_434)资助项目
关键词 米根霉 富马酸 膜反应器 固定化细胞 R. oryzae Fumaric acid Biofilm reactor Immobilized cell
  • 相关文献

参考文献5

二级参考文献161

共引文献39

同被引文献41

  • 1刘立华,刘汉文,龚竹青.二乙基二烯丙基氯化铵均聚及其与丙烯酰胺或丙烯酸共聚动力学研究[J].高分子学报,2007,17(2):183-189. 被引量:10
  • 2吴真,林鹿,庞春生,孙勇,彭红,李嘉喆.麦草酸水解及水解液木糖发酵的研究[J].生物质化学工程,2007,41(5):13-17. 被引量:4
  • 3降林华,徐初阳,邹立壮,刘权.高分子絮凝剂淀粉接枝丙烯酰胺的合成与应用[J].化学研究与应用,2007,19(10):1070-1075. 被引量:9
  • 4Wang Lifen, Zhang Xianfu, Weng Qiaoqin, et al. Ingredients of sheafing leaf of Zizania latifolia and the effects of urea and sodium hydroxide[J]. Journal of shanghai jiaotong university,2012, 30( 1 ) :45-49. 被引量:1
  • 5Miuea S, Arimura T, hoda N, et al. Production of L-lactic acid from corncob[J]. J Biosci Bioeng,2004,97(3):153-157. 被引量:1
  • 6Jeffries T W. Utilization of xylose by bacteria, yeasts, and fungi[J]. Adv Biochem Eng Biotechnol,1983,27:1-32. 被引量:1
  • 7Bai D M, Li S Z, Liu Z L, et al. Enhanced L-(+)- lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate[J]. Appl Biochem Biotechnol,2008,144:79-85. 被引量:1
  • 8Maas R H W, Springer J, Eggink G, et al. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L(+)-lactic acid production[J]. J Ind Microbiol Biotechnol,2008,35:569-578. 被引量:1
  • 9Bai D M, Jia M Z, Zhao X M, et al. L(+)-Laetic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor[J]. Chem Eng Sci,2003,58:785-791. 被引量:1
  • 10Maas R H W, Bakker R R, Eggink G, et al. Lactic acid production from xylose by the fungus Rhizopus oryzae[J]. Appl Microbial Biotechnol,2006,72:861-868. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部