期刊文献+

一类反常次扩散方程Neumann问题的有限差分格式及收敛性分析 被引量:2

A Finite Difference Scheme and a Convergence Analysis of a Kind of Anomalous Diffusion Equation with Neumann Conditions
下载PDF
导出
摘要 利用一阶向前差商和空间二阶中心差商以及高阶线性多步法公式构造了反常次扩散方程Neumann问题的有限差分格式,借助Fourier分析方法对差分格式的稳定性进行了分析,并讨论了差分格式的误差和收敛性问题. A finite difference method and a convergence problem for a kind of anomalous diffusion equation with Neumann conditions are discussed. A finite difference scheme is obtained by adopting the method of the first-order forward difference quotient and second-order space center difference quotient and the formula of higher-order linear multistep method to discrete the fractional derivatives. The stability of the difference scheme is analyzed by means of Fourier analysis and the errors and convergence of the schemes are also discussed.
出处 《五邑大学学报(自然科学版)》 CAS 2014年第1期1-4,9,共5页 Journal of Wuyi University(Natural Science Edition)
基金 国家自然科学基金资助项目(No.60673192) 四川省科技厅资助项目(2013JY0125)
关键词 反常次扩散方程 差分法 分离变量法 anomalous diffusion equations difference methods separation variable methods
  • 相关文献

参考文献8

  • 1孙洪广,陈文,蔡行.空间分数阶导数“反常”扩散方程数值算法的比较[J].计算物理,2009,26(5):719-724. 被引量:9
  • 2ANDRADE de M F, LENZI E K~ EVANGELISTA L R, et al. Anomalous diffusion and fractional diffusion equation: anisotropic media and external forces [J]. Physics Letters A, 2005, 347(4-6): 160-169. 被引量:1
  • 3PODLUBNY I. Fractional differential equations [M]. San Diego: Academic Press, 1999. 被引量:1
  • 4YUSTE S, ACEDO L. An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations [J]. SIAM J Numer Anal~ 2005, 42(5): 1862-1874. 被引量:1
  • 5LANGLANDS T~ HENRY B. The accuracy and stability of an implicit solution method for the fractional diffusion equation [J]. J Comp Phys0 2005, 205(2): 719-736. 被引量:1
  • 6ZHUANG Pinghui, LIU Fawang, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous sub-diffusion equation [J]. SIAM on Numerical Analysis, 2008, 46(2): 1079-1095. 被引量:1
  • 7CHEN Changming, LIU Fawang, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion [J]. J Comp Phys, 2007, 227: 886-897. 被引量:1
  • 8郭柏林,蒲学科,黄风辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011. 被引量:5

二级参考文献5

共引文献12

同被引文献35

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部