期刊文献+

一种改进的基于K-SVD字典学习的运动目标检测算法 被引量:2

An Improved Moving Object Detection Algorithm Based on Dictionary Learning
下载PDF
导出
摘要 提出了一种基于字典学习的运动目标检测方法.该方法首先使用多帧平均方法从训练样本中得到初始背景,再通过BP算法建立背景的初始稀疏表示模型;然后利用视频序列中当前时刻的近邻五帧图像,通过K-SVD方法自适应更新背景数据字典中的原子,使背景稀疏表示模型最优逼近近邻帧背景的观测值;最后将当前帧图像与背景模型进行差分,完成前景运动目标的检测.仿真和对比实验结果表明,对图像信号进行稀疏表示可以有效降低数据的冗余度,减小运行时间,同时在字典更新阶段利用近邻帧图像的相关性特性,能获得鲁棒性较好的背景字典,自动排除伪前景的干扰,从而提高视频序列中的运动目标检测的准确率. A moving object detection algorithm based on the theory of dictionary learning is proposed .Firstly ,the algorithm gets an initial background image from the training samples by multi-frame averaging algorithm ,and then the initial background sparse representation model is built upon it by BP algorithm .Secondly ,combining with the current adjacent five frames ,the dictionary is updated adaptively by K-SVD method in order to make the background model approximate adjacent frames background′s observation values optimally . Finally , the foreground moving object is obtained by subtracting the background model from the current image . Simulation and comparison experimental results demonstrate that the algorithm can not only reduce data redundancy effectively and decrease the running time via sparse representation , but also can obtain a more robust background dictionary and avoid the interference of the pseudo-foreground by making full advantage of correlation of adjacent frames ,and in the end increased the precision rate of moving object detection .
出处 《微电子学与计算机》 CSCD 北大核心 2014年第3期5-8,13,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61163056) 江西省科技支撑计划项目(20123BBE50093) 江西省教育厅科技项目(GJJ12306) 江西省研究生创新专项基金项目(YC2012-X015)
关键词 目标检测 背景差分 稀疏表示 字典学习 object detection background subtraction sparse representation dictionary learning
  • 相关文献

参考文献3

二级参考文献24

  • 1Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. 被引量:1
  • 4Zhang Lei, Xing Meng-dao, and Qiu Cheng-wei, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling [J]. IEEE Geoscienee and Remote Sensing Letters, 2009, 6(3): 567-571. 被引量:1
  • 5Huang Q, Qu L L, Wu B H, and Fang G Y. UWB through-wall imaging based on compressive sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3) 1408-1415. 被引量:1
  • 6Bhattacharya S, Blumensath T, Mulgrew B, and Davies M.Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. IEEE Workshop on Statistical Signal Processing, Madison, USA, Aug. 2007: 448-452. 被引量:1
  • 7Parel V M, Easley G R, Healy D M Jr, and Chellappa R. Compressed synthetic aperture radar [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254. 被引量:1
  • 8Baraniuk R and Steeghs P. Compressive radar imaging[C]. Proceeding of International Conference on Radar. Boston: IEEE, 2007: 128-133. 被引量:1
  • 9Potter L C, Ertin E, Patter J T, and Cetin M. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020. 被引量:1
  • 10Yang Jumfeng, Zhang Yin, and Yin Wo-tao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297. 被引量:1

共引文献56

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部