期刊文献+

基于支持向量机与水平集的颅内血肿图像分割方法研究 被引量:1

Research on Intracranial Hematoma Regional Medical Images Segmentation Method Based on Support Vector Machine(SVM) and Level Set
下载PDF
导出
摘要 颅内血肿图像的正确分割是血肿三维重建和血肿体积计算的关键,其结果可为医生的临床诊断提供帮助。由于脑部血肿CT图的特性,采用单一的分割方法很难分割出目标区域,首先采用全局阈值对图像预处理,再采用支持向量机(SVM)和水平集(Level Set)相结合的方法分割颅内血肿,方法具有一定的新颖性,经过实验证明,该方法能够自动、较准确地分割颅内血肿。 The correct segmentation of intracranial hematoma image is critical to three-dimensional reconstruction of hematoma and volume calculations of hematoma.The results can help the doctor's clinical diagnosis.Because of the characteristics of brain hematoma CT image.The segmentation of target area is difficulty with a single way,this algorithm which combine Thresholding,support vector machine (SVM) and Level Set is proved to be automate and accurate after many experiments.
出处 《工业控制计算机》 2014年第2期61-62,73,共3页 Industrial Control Computer
关键词 水平集 支持向量机 颅内血肿 医学图像分割 level set,SVM,intracranial hematoma,medical Image segmentation
  • 相关文献

参考文献8

  • 1罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010:164-165. 被引量:12
  • 2庄天戈.CT原理与算法[M].上海:上海交通科技大学出版社,1993.5-6. 被引量:4
  • 3Vapnik V. Statistical learning theory [M]. New York: Wiley, 1998: 10-20. 被引量:1
  • 4T Chan,L Vese.Active contours without edges[J]. IEEE Trans- actions on Image Processing, 2001, 10(2):266-277. 被引量:1
  • 5SVM及其扩展算法在图像处理中的应用研究[D].西安:西安石油大学,2010. 被引量:1
  • 6S Osher,J A Sethian. Fronts propagating with curvature-de- pendent speed: AIogodthms based on Hamilton Jacobi for- mulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. 被引量:1
  • 7冯媛,汪西莉.结合梯度和区域信息的多尺度水平集图像分割[J].计算机工程与应用,2010,46(35):180-184. 被引量:6
  • 8C Li, C Xu, C Gui. Level set evolution without re-initializa- tion:a new variational formulation [J].IEEE Conference on Computer Vision and pattern Recognition(CVPR). 2005, 1(1): 430-436. 被引量:1

二级参考文献11

  • 1秦安,冯前进,陈武凡.小波多尺度水平集算法与心脏超声图像鲁棒分割[J].计算机工程与应用,2006,42(30):208-211. 被引量:5
  • 2任继军,何明一.一种新的水平集图像分割方法[J].计算机工程与应用,2007,43(19):16-18. 被引量:4
  • 3Osher S, Sethian J.Fronts propagating with curvature-dependent speed:Algorithms based on the Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988,79( 1 ) : 12-49. 被引量:1
  • 4Malladi R,Sethian J A,Vemuri B C.Shape modeling with front propagation:A level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2) : 158-175. 被引量:1
  • 5Caselles V,Catte F,Coll T,et al.A geometric model for active contours in image processing[J].Numerische Mathematic, 1993, 66(1):1-31. 被引量:1
  • 6Mumford D, Shah J.Optimal approximation by piecewise smooth ftmetions and associated variational problems[J].Communications on Pure and Applied Mathematics, 1989,42(5):577-685. 被引量:1
  • 7Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 8Li C,Xu C,Gui C,et al.Level set formulation without re-initialization: A new variational formulation[C]//IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, 1: 430-436. 被引量:1
  • 9Cheng L,Yang J, Fan X,et al.A generalized level set formula- tion of the Mumford-Shah functional for brain MR image seg- mentation[M].Heidelberg, Berlin: Springer, 2005. 被引量:1
  • 10Zhang H, Bian Z, Guo Y, et al.An efficient multi-scale approach to level set evolution[C]//Proceedings of the 25th Annual International Conference of the IEEE EMBS.Caneun, Mexico: [s.n.], 2003 : 17-21. 被引量:1

共引文献19

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部