期刊文献+

头部异物两步核磁共振电阻抗成像仿真研究 被引量:4

Simulation on two-step magnetic resonance electrical impedance tomography of brain anomaly tissues
下载PDF
导出
摘要 在三层球和真实形状头模型(包括头皮、颅骨和大脑)上,采用基于径向基函数(RBF)神经网络的两步核磁共振电阻抗成像(MREIT)算法,对颅内病变组织阻抗成像进行了仿真研究.使用高分辨率的核磁共振成像系统对人体头部进行三维构建和不同组织边界区分,利用两步基于径向基函数神经网络的MREIT算法分别对颅内病变组织均匀阻抗和非均匀阻抗(每个单元的电阻抗值)分布进行估计.该两步MREIT算法适用于人体头部复杂组织结构的阻抗成像,仿真实验表明,采用MREIT技术对颅内占位性病变组织(血肿或脑瘤)的阻抗成像过程简单,重构的阻抗图像具有较高的精确性,算法具有一定的抗噪性能. Two-step magnetic resonance electrical impedance tomography (MREIT) algorithm based on radius basic function (RBF) neural network was used to reconstruct the electrical impedance distribution of the encephalic pathological tissues on the three-sphere and realistic head model. The high resolution magnetic resonance imaging system was used to construct the three-dimensional head model and identify the boundary of different tissues. Then the two-step MREIT algorithm was applied to estimate the piece wise homogeneous and inhomogeneous impedance of the pathological tissue respectively. The simulation verified that the two-step MREIT algorithm is a feasible means to reconstruct the continuous electric impedance distribution, especially for the complicated human head tissues, with simple imaging process, robustness against noise, and high spatial resolution.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期661-666,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(5057705) 美国国家科学基金资助项目(NSFBES-0411898) 美国国立卫生院基金资助项目(NIHR01EB00178)
关键词 核磁共振电阻抗成像 电阻抗断层成像 径向基函数神经网络 颅内病变组织 magnetic resonance electrical impedance tomography (MREIT) electrical impedance tomo- graphy (EIT) radius basic function neural network encephalic pathological tissues
  • 相关文献

参考文献13

  • 1田海燕,何为,杨浩.电阻抗断层成像技术应用于脑血肿实时监测的仿真研究[J].生物医学工程学杂志,2003,20(2):245-248. 被引量:4
  • 2BIRGUL O, EYUBOGLU B M, IDER Y Z. Current constrainted voltage scaled reconstruction (CCSVR) algorithm for MR-EIT and its performance with different probing current patterns [J]. Physics in Medicine and Biology, 2003, 48:653-671. 被引量:1
  • 3KHANG H S, LEE B I, OH S H, et al. J substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images [J]. IEEE Transactions on Medical Imaging, 2002, 21: 695- 702. 被引量:1
  • 4KWON O, LEE J Y, YOO J R. Equipotential line method for magnetic resonance electrical impedance tomography (MREIT) [J]. Inverse Problems, 2002a, 18:1089 - 1100. 被引量:1
  • 5OZDEMIR M S, EYUBOGLU B M,OZBEK O. Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization[J]. Physics in Medicine and Biology, 2004, 49:4765 -4783. 被引量:1
  • 6SEO J K, YOON J R, WOO E J, et al. Reconstruction of conductivity and current density imaging using only one component of magnetic field measurements [J]. IEEE Transactions on Biomedical Engineering, 2003, 50(9):1121 - 1124. 被引量:1
  • 7OH S H, LEE B I, WOO E J, et al. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography [J]. Physics in Medicine and Biology, 2003, 48:3101 - 3116. 被引量:1
  • 8OH S H, LEE B I, WOO E J, et al, Electrical conductivity images of biological tissue phantom in MREIT [J], Physiological Measurement, 2005, 26 :S279 - S288. 被引量:1
  • 9IDER Y Z, ONART S. Algebric reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density [J], Physiological Measurement, 2004, 25 :281 - 294. 被引量:1
  • 10PARK C, KWON O, WOO E J,et al. Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT) [J]. IEEE Transactions on Medical Imaging, 2004, 23(3): 388-394. 被引量:1

二级参考文献4

  • 1[1]Brown BH, Barber DC, Seagar AD. Applied potential tomography: Possible clinical application. Clin. Phys. Physiol. Meas., 1985;6∶109-121 被引量:1
  • 2[2]Li XL, He XB, Zhou SC. Reconstructing the conductivity of nodes in Electrical Impedance Tomography. Proc of IEEE EMBS Hongkong, 1998; 89∶126 被引量:1
  • 3[3]Dennis,JE. Quasi-Newton methods, Motivation and theory. SIAM Review, 1977;19∶46-89 被引量:1
  • 4[4]Joyce, DC. Survey of extrapolation processes in numerical analysis. SIAM Rev, 1971;13∶435~490 被引量:1

共引文献3

同被引文献58

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部