摘要
本文针对无领航者的多Euler-Lagrange系统,设计了一种分布式有限时间一致性控制算法.该算法只利用相邻个体的位置信息和自身的速度信息作为输入,使得网络化Euler-Lagrange系统在有限时间内达到一致性.考虑到闭环Euler-Lagrange系统的非自主性,运用Matrosov定理、Lyapunov稳定性定理和有限时间稳定性定理等对所设计的控制器的稳定性进行了证明,并进行了数值仿真实验,验证了控制器的有效性.
This paper considers finite time consensus problem of networked Euler-Lagrange systems. For each agent, finite time consensus algorithm is designed by using the position information of its neighbors and the velocity information of its own. Because the closed-loop networked Euler-Lagrange equations are non-autonomous, we need to use Matrosov's theorem, Lyapunov stability theorem and the finite-time stability theory for convergence analysis. Numerical simulation is conducted to validate the effectiveness of the controller.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2014年第1期93-99,共7页
Control Theory & Applications
基金
国家自然科学基金资助项目(61203354)