期刊文献+

基于EEG与EOG信号的疲劳驾驶状态综合分析 被引量:11

Comprehensive Analysis of Fatigue Driving Based on EEG and EOG
下载PDF
导出
摘要 疲劳驾驶时,司机的脑电信号和眼电信号特征均发生显著变化,本文针对这两类信号进行分析研究,利用这两类数据综合分析判断司机是否处于疲劳驾驶状态.首先对采集的脑电信号进行小波包分解,提取信号中的α波,并计算其相对功率谱P;然后利用Pearson相关系数分析两路对称导联F7,F8中眨眼信号特征,去除干扰;最后利用BP神经元网络对眨眼信号进行识别,计算眨眼频率.结果表明,利用眼电信号和脑电信号特征综合分析司机眨眼动作,能准确识别出眨眼信号,并能正确检测人的驾驶疲劳状态的变化. The EEG and EOG have significant changes when drivers are fatigued. So these two types of signals can be used to analyze fatigue driving. Firstly, the a rhythm was extracted from drivers' EEG signals using wavelet packet decomposition and its relative power spectrum P was calculated. Then the blinking characteristics of the EOG signals contained in F7 and F8 channels were analyzed and the interference signals were removed using the Pearson correlation coefficient. Finally, the blinking signals were identified using BP neural network and the blinking rate was calculated. The results show that using the comprehensive analysis of EOG and EEG can accurately identify the blinking signals and correctly detect the changes of driver fatigue state.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期175-178,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61071057)
关键词 疲劳驾驶 脑电信号 眼电信号 小波包分解 相对功率谱 眨眼频率 fatigue driving EEG ( electroencephalogram ) EOG ( electroencephalogram ) wavelet packet decomposition relative power spectrum blinking rate
  • 相关文献

参考文献12

  • 1Philipa H G,Nathniel S M, James I, et al. Investigating driver fatigue in truck crashes: trial of a systematic methodology [J ]. Transportation Research, Part F: Traffic Psychology and Behavior,2006,9 ( 1 ) :65 - 76. 被引量:1
  • 2Murata A, Uetake A, Takasawa Y. Evaluation of mentalfatigue using feature parameter extracted from event-related potential [ J ]. International Journal of Industrial Ergonomics, 2005,35 (4) :761 - 770. 被引量:1
  • 3Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single trial analysis[ J ] IEEE Signal Processing Magazine ,2008,25 ( 1 ) :41 - 56. 被引量:1
  • 4叶柠,孙宇舸.基于EEG小波包子带能量比的疲劳驾驶检测方法[J].东北大学学报(自然科学版),2012,33(8):1088-1092. 被引量:13
  • 5Jap B T, Lal S, Fischer P, et al. Using EEG spectral components to assess algorithms for detecting fatigue [ J]. Expert Systems with Applications,2009,36 ( 2 ) : 2352 - 2359. 被引量:1
  • 6宋国明,王厚军,刘红,等.基于提升小波变换和SVM的模拟电路故障诊断[J].电子测鼍与仪器学报,2010,24(1):17-22. 被引量:1
  • 7中国生,敖丽萍,赵奎.基于小波包能量谱爆炸参量对爆破振动信号能量分布的影响[J].爆炸与冲击,2009,29(3):300-305. 被引量:32
  • 8郭兴明,丁晓蓉,钟丽莎,雷鸣,翁渐.小波包与混沌集成的心音特征提取及分类识别[J].仪器仪表学报,2012,33(9):1938-1944. 被引量:21
  • 9Borghini G, Astolfi L, Vecchiato G, et al. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness [ J/OL]. [2013 -04 -09 1-http://www. ncbi. nhn. nih. gov/pubmed/23116991. 被引量:1
  • 10Wijesuriya N, Tran Y, Craig A. The psychophysiological determinants of fatigue[ J ]. International Journal of Psychophysiology ,2007,63 ( 1 ) :77 - 86. 被引量:1

二级参考文献41

共引文献60

同被引文献68

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部