期刊文献+

具非均匀介电常数的半导体方程组的初边值问题 被引量:1

The Initial Boundary Value Problem of Semiconductor Equations With Discontinuous Permittivities
下载PDF
导出
摘要 考虑具非均匀介电常数的半导体方程组的初边值问题.采用逼近解过程,利用不动点原理证明逼近解的存在性,经过对逼近解建立先验估计,根据紧致性原理证明了该问题整体弱解的存在性. In this paper we consider the initial boundary value problem of semiconductor e-quations with discontinuous permittivities. We prove the existence of a weak solution to these problem. The proof is based on an approximation of these equation by a system with bounded non-linearities, deriving a priori estimates on the approximate solutions and then carrying out the passage to limit.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2001年第1期62-69,共8页 Acta Mathematica Scientia
基金 国家自然科学基金资助(19872010) 北京航空航天大学理学院基金资助
关键词 半导体方程组 非均匀介电常数 初边值问题 整体弱解 半导体器件 Semiconductor equations, Discontinuous permittivities, Initial boundary value problem,Global weak solution.
  • 相关文献

参考文献5

二级参考文献2

共引文献1

同被引文献6

  • 1Jerome J W. Consistency of semiconductor modeling: An existence and stability analysis for the stationary Van Roosbroeck system. SIAM J Appl Math, 1985, 45(4): 565-590 被引量:1
  • 2Frehse J, Naumann J. An existence theorem for weak solutions of the basic stationary semiconductor equation. Appl Anal, 1993, 48(1-4): 157-172 被引量:1
  • 3Frehse J, Naumann J. On the existence of weak solutions to a system of stationary semiconductor equations with avalanche generation. Math Models Meth Appl Sci, 1994, 4(2): 273-289 被引量:1
  • 4Frehse J, Naumann J. Stationary semiconductor equations modeling avalanche generation. J Math Anal Appl, 1996, 198(3): 685-702 被引量:1
  • 5Markowich P A. A nonlinear eigenvalue problem modeling the avalanche effect in semiconductor diodes. SIAM J Math Anal, 1985, 16(6): 1268-1283 被引量:1
  • 6Naumann J. On the existence of weak solutions to the stationary semiconductor equations: The current driven case. Math Models Meth Appl Sci, 1999, 9(1): 111-126 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部