期刊文献+

PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4

PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK
下载PDF
导出
摘要 Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. Phase space reconstruction is the first step of recognizing the chaotic time series. On the basis of differential entropy ratio method, the embedding dimension mopt and time delay τ are op- ritual for the state space reconstruction could be determined. But they are not the optimal parameters accepted for prediction. This study proposes an improved method based on the differential entropy ratio and Radial Basis Function (RBF) neural network to estimate the embedding dimension rn and the time delay τ, which have both optimal characteristics of the state space reconstruction and the prediction. Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively, and both the prediction accuracy and prediction length are improved greatly.
出处 《Journal of Electronics(China)》 2014年第1期61-67,共7页 电子科学学刊(英文版)
基金 Supported by the Key Program of National Natural Science Foundation of China(Nos.61077071,51075349) Program of National Natural Science Foundation of Hebei Province(Nos.F2011203207,F2010001312)
关键词 Phase-space reconstruction Chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis Function(RBF) neural network Phase-space reconstruction Chaotic time series Differential entropy ratio Embeddingdimension Time delay Radial Basis Function (RBF) neural network
  • 相关文献

参考文献9

二级参考文献76

共引文献165

同被引文献36

  • 1闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法[J].物理学报,2007,56(9):5111-5118. 被引量:18
  • 2HU Shiyuan,LI Deren,LIU Yaolin,LI Deyi.Mining Weights of Land Evaluation Factors Based on Cloud Model and Correlation Analysis[J].Geo-Spatial Information Science,2007,10(3):218-222. 被引量:17
  • 3CHAN Hsiao-Lung, WANG Chun-Li, FANG Shih-Chin, et al. Recognition of Ventricular Extrasystoles Over the Reconstructed Phase Space of Electrocardiogram [J]. Annals of Biomedical Engineering ($1573-9686), 2010, 38(3): 813-823. 被引量:1
  • 4Tongal H, Bemgtsson R. Phase-space Reconstruction and Self-exciting Threshold Modeling Approach to Forecast Lake Water Levels [J]. Stochastic Environmental Research and Risk Assessment (S1436-3259), 2014, 28(4): 955-971. 被引量:1
  • 5Sun Y, Zhou D, Rangan A V, et al. Pseudo-Lyapunov Exponents and Predictability of Hodgkin-Huxley Neuronal Network Dynamics [J]. Journal of Computational Neuroscience (S1573-6873), 2010, 28(2): 247-266. 被引量:1
  • 6Wu Zongmin, Sun Xingping, Ma Limin. Sampling Scattered Data with Bernstein Polynomials: Stochastic and Deterministic Error Estimates [J]. Advances in Computational Mathematics (S1572-9044), 2013, 38(1): 187-205. 被引量:1
  • 7Lee S H, Chung K Y, Lim J S, et al. Detection of Ventricular Fibrillation Using Hilbert Transforms, Phase-space Reconstruction, and Time-domain Analysis [J]. Personal and Ubiquitous Computing (S1617-4917), 2014, 18(6): 1315-1324. 被引量:1
  • 8Zhong Yubin, Xiang Yi, Jiang Yuanbin, et al. A Hybrid Dynamic Multi-swarm PSO Algorithm with Nelder-mead Simplex Search Method [J]. Journal of Computational Information Systems (S1553-9105), 2013, 9(19): 7741-7748. 被引量:1
  • 9Kumar S, Chaturvedi D K. Optimal Power Flow Solution Using GA-Fuzzy and PSO-Fuzzy [J]. Journal of the Institution of Engineering (India): Series B (S2250-2114), 2014, 95(4): 363-368. 被引量:1
  • 10乔伟,李文平,赵成喜.煤矿底板突水评价突水系数–单位涌水量法[J].岩石力学与工程学报,2009,28(12):2466-2474. 被引量:48

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部