期刊文献+

一种基于优化的RBF神经网络交通流预测新算法 被引量:6

A New Method of Traffic Flow Forecasting Based on Optimized RBF Neural Networks
下载PDF
导出
摘要 提出了一种基于遗传算法优化的RBF神经网络交通流预测新方法,该方法把遗传算法应用于RBF神经网络的参数确定中,实现了RBF神经网络隐层高斯函数的中心矢量和基宽向量以及隐层与输出层之间的权值的优化,提高了RBF神经网络的泛化能力。仿真结果表明:改进的RBF网络用于交通流预测中具有可靠的精度和较好的收敛速度,具有广阔的应用推广前景。 A new method of traffic flow forecasting based on optimized RBF neural networks using genetic algorithm was improved. Genetic algorithm was applied to optimize position of data centers, widths and weights of RBF neural network in this method. Consequently, RBF neural networks designed with this method could generalize well. The simulation results show that the improved RBF neural networks applied in traffic flow forecasting with reliable accuracy and good convergence rate. The method possesses high value being generalized.
出处 《计算机与数字工程》 2010年第9期127-129,139,共4页 Computer & Digital Engineering
关键词 遗传算法 RBF神经网络 参数优化 交通流量预测 genetic algorithm, RBF neural networks, parameter optimization, traffic flow forecasting
  • 相关文献

参考文献8

二级参考文献38

  • 1许宏科,慕巍,焦家华.高速公路动态交通流模型及其参数的分段辨识[J].武汉理工大学学报(交通科学与工程版),2005,29(1):91-93. 被引量:3
  • 2姚智胜,邵春福,高永亮.基于支持向量回归机的交通状态短时预测方法研究[J].北京交通大学学报,2006,30(3):19-22. 被引量:51
  • 3A Jonathan Howell,Hilary Buxton.Learning identity with radial basis function networks [J].Neurocomputing,1998,20:15-34. 被引量:1
  • 4Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks.1991,2(2):302-309. 被引量:1
  • 5Orr M J L.Regularization in the selection of radial basis function centers[J].Neural Computation,1995,7:606-623. 被引量:1
  • 6Joannou D,Huda W,Laine A F.Circle Recognition through a 2D Hough transform and radius histogramming[J].Image and vision computing,1999,17:15-26. 被引量:1
  • 7HUSSEIN Dia.An Object-oriented Neural Network Approach to Short-term Traffic Forecasting[J].Special Issue of the European Journal of Operations Research,2001,131(2):253. 被引量:1
  • 8Abhijit Dharia,Hojjat Adeli.Neural Network Model for Rapid Forecasting of Freeway Link Travel Time[M].Engineering Applications of Artificial Intelligence,2003,16(7/8):607. 被引量:1
  • 9Chrobok R,Kaumann O,Wahle J,et al.Different Methods of Traffic Forecast Based on Real Data[J].European Journal of Operational Research,2004,155(3):558. 被引量:1
  • 10Bart Van Arem,Howard R Kirby et al.Recent Advances and Application in the Field of Short-term Traffic Forecasting[J].International Journal of Forecasting,1997,13(1):1. 被引量:1

共引文献102

同被引文献60

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部