摘要
本文基于有限元方法 ,采用线性单元 ,通过节点周围单元内的一阶导数的加权平均来确定单元节点上变量的一阶空间导数值 ,建立了求解 Boussinesq方程的数值计算模型 ,模型中 ,时间的积分采用 Adams- Bashforth- Moulton预报—校正法 。
It this paper, a numerical model for solving the improved Boussinesq equations derived by Beji and Nadaoka [4] is presented. The finite element method was used to discretize the spatial derivatives. Quadrilateral elements with linear interpolating functions were employed for the two horizontal velocity components and the water surface elevation. The time integration was performed using the Adams Bashforth Moulton predictor corrector method. Test cases for which either theoretical solutions or laboratory results are available were used to test the proposed scheme. The model is capable of giving satisfactory predictions in the cases.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2000年第4期399-410,共12页
Chinese Journal of Hydrodynamics
基金
国家自然科学基金资助项目!( 594 790 0 6)
国家自然科学基金重点项目!( 19732 0 0 4 )