期刊文献+

模糊图像盲复原的鲁棒自适应滤波算法 被引量:4

Image Blind Deblurring Using Robust Adaptive Filtering Approach
下载PDF
导出
摘要 运动模糊图像盲复原是图像处理中的关键问题之一.由于模糊信息估计的复杂性以及图像噪声的影响,现有算法往往难以做到高质量的图像复原.为改善模糊信息估计的效果,提出一种基于自适应线性滤波的改进算法.首先在原有模糊信息估计过程中引入自适应动态线性滤波以抑制噪声影响,达到改善模糊信息估计结果的目的,同时可以起到调整优化目标的作用,使原问题变得较容易求解,从而获得高质量的模糊信息估计;在此基础上提出了改进的重定权值split Bregman迭代法,用于获得模糊信息后求解原始图像的过程中,进一步改善模糊图像复原的效果.实验结果表明,与3种现有的模糊图像盲复原算法相比,该算法能更准确地估计模糊信息,对多数图像复原任务具有更好的鲁棒性,能有效地用于运动模糊图像复原任务. We propose a novel approach to estimating blur kernel in the Blind Image Deblurring.This is a challenging problem,because image restoration with unknown kernels is an ill-posed deconvolution process.Existing methods are also sensitive to image noise and compression artifacts.Our method overcomes these drawbacks by introducing an adaptive linear filter to handle image noise.The blur kernel is automatically learned together with the adaptive linear filter simultaneously.Then,the clear images are restored using an improved non-blind deblurring method based on reweighted split Bregman iteration optimization.Compared to the state of the arts,our approach is more robust to image noise and shows stable performance in single image deblurring tasks.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期457-464,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61233011,90820306)
关键词 图像盲复原 正则化方法 L1范数优化 线性滤波 split Bregman迭代 blind image deblurring regularization method L1-norm minimization linear filtering split Bregman iteration
  • 相关文献

参考文献14

  • 1Kurdur D. Hatzinakos D. Blind image restoration via recursive filtering using deterministic constraints[C] I I Proceedings of IEEE Conference on Acoustics Speech and Signal Processing. Los Alamitos: IEEE Computer Society Press. 1996. 4: 2283-2286. 被引量:1
  • 2CaiJ F.Ji H. Liu C Q. et at. Blind motion deblurring using multiple images[J].Journal of Computational Physics. 2009. 228(14): 5057-5071. 被引量:1
  • 3高潮,郭永彩,刘国祥.基于频域共轭梯度算法的盲目图像恢复[J].计算机学报,2003,26(9):1152-1156. 被引量:5
  • 4王素玉,沈兰荪,卓力,李晓光.一种基于权值矩阵的序列图像超分辨率盲复原算法[J].电子学报,2009,37(6):1198-1202. 被引量:4
  • 5Rudin L I. Osher S. Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena. 1992. 60(\-4): 259-268. 被引量:1
  • 6Levin A. Weiss Y. Durand F. et at. Understanding and evaluating blind deconvolution algorithms[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2009: 1964-1971. 被引量:1
  • 7Krishnan D. Tay T. Fergus R. Blind deconvolution using a normalized sparsity measure[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2011: 233-240. 被引量:1
  • 8Weiss Y. Freeman W T. What makes a good model of natural images?[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2007: 1-8. 被引量:1
  • 9Fergus R. Singh B. Hertzmann A. et at. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics. 2006. 25(3): 787-794. 被引量:1
  • 10Krishnan D. Fergus R. Fast image deconvolution using hyper-Laplacian priors[C]// Proceedings of Conference on Neural Information Processing Systems. Cambridge: MIT Press. 2009: 1033-1041. 被引量:1

二级参考文献40

  • 1张晓玲,沈兰荪,Lam Kin-Man.一种基于分形码和模型约束的图像放大算法[J].电子学报,2006,34(3):433-436. 被引量:11
  • 2Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical review[ J]. IEEE Signal Processing Magazine,2003, (5) :21 - 36. 被引量:1
  • 3Hu He, Lisimachos P Kondi. A regularization framework for joint blur estimation and super-resolution of video sequences [A]. Proceedings of 2005 IEEE International Conference on Image Processing[ C]. Genoa, Italy: ICIP 2005.3:Ⅲ- 329- 332. 被引量:1
  • 4Isabelle Begin, Frank P. Ferrie. Blind super-resolution using a learning-based approach[A]. Proceedings of the 17^th International Conference on Pattern Recognition[ C]. Cambridge, UK: ICPR'04,2004.2:85 - 89. 被引量:1
  • 5Yu He,Kim-Hui Yap,Li Chen,Lap-Pui Chau. Blind super-resolution image reconstruction using a maximum a posteriori estimarion[ A]. Proceedings of,2006 IEEE International Conference on Image Processing[ C ]. Atlanta, GA USA: ICIP, 2006. 1729 - 1732. 被引量:1
  • 6Keepa Kundur, Dimitrios Hatzinakos. Blind image deconvolution[J].IEEE Signal Processing Magazine, 1996, 13(3):43- 64. 被引量:1
  • 7Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[ J]. IEEE transactions on image processing, 1996,5(6) :996 - 1011. 被引量:1
  • 8Hu He. Bayesian-Based Image Video Super-Resolution Techniques[ D] .Buffalo: The State University of New York at Buffalo, 2005. 被引量:1
  • 9Conchello J A,Yu Q. Parametric blind deconvolution of fluores-cence microscope images: Preliminary results. In:Proceedings ofSPIE(The International Society for Optical Engineering), 1996,2655. 被引量:1
  • 10Subbarai M, Wei T C, Surya G. Focused image recovery fromtwo defocused images recorded with different camera settings.IEEE Transactions on Image Processing , 1995, 7(12): 1613~1628. 被引量:1

共引文献16

同被引文献43

  • 1Ruiz P, Orozco M H, Mateos J, et al. Combining Poisson singular integral and total variation prior models in image restoration[J].Signal Processing,2014,103(10):296-308. 被引量:1
  • 2Beck M E, Schindler M. Quantitative structure-activity relations based on quantum theory and wavelet transformations[J].Chemical Physics,2009,356(17):121-130. 被引量:1
  • 3Ling S H, San P P, Chan K Y, et al. An intelligent swarm based-wavelet neural network for affective mobile phone design[J]. Neurocomputing, 2014,142(22):30-38. 被引量:1
  • 4Ma J X, Ding R. Recursive computational formulas of the least squares criterion functions for scalar system identification[J]. Applied Mathematical Modelling,2014,38(1):1-11. 被引量:1
  • 5Kleptsyna M, Le Breton A, Bernard Y. Exponential transform of quadratic functional and multiplicative ergodicity of a Gauss-Markov process[J].Statistics & Probability Letters,2014,7(4):70-75. 被引量:1
  • 6Fraz M M, Barman S A, Remagnino P, et al. An approach to localize the retinal blood vessels using bit planes and centerline detection[J].Computer Methods and Programs in Biomedicine,2012,108(10):600-616. 被引量:1
  • 7Milani S, Calvagno G. Distributed video coding based on lossy syndromes generated in hybrid pixel transform domain[J]. Signal Processing:Image Communication,2013,28(6):553-568. 被引量:1
  • 8He Y Q, Huang T Y. Objective quality definition of scalable video coding and its application for optimal streaming of FGS-coded videos[J].Computer Communications,2009,32(1):34-40. 被引量:1
  • 9Kang K, Park J, Shin H. On the effect of Reed–Solomon coding with maximum block interleaving on MPEG-4 FGS video quality in 3G broadcasting[J]. Simulation Modelling Practice and Theory,2009,17(3):504-512. 被引量:1
  • 10Wang Z H, Chang C C, Li M C. Optimizing least-significant-bit substitution using cat swarm optimization strategy[J]. Information Sciences,2012,192(1):98-108. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部