期刊文献+

位置扰动的粒子群算法 被引量:3

Position disturbed particle swarm optimization
下载PDF
导出
摘要 针对基本粒子群算法具有容易陷入局部极值、对多维搜索空间精度不高等缺陷,提出了一种位置扰动的粒子群算法。算法通过对粒子个体最优位置的一个或多个随机维上的计算,产生对群体最优位置对应维上的扰动,使群体最优位置可以从个体最优位置搜索经验中更直接的学习,并且跳出局部最优。通过几个常用测试函数的测试结果表明,位置扰动的粒子群算法比标准PSO算法在处理多峰值、多维搜索空间问题时有更高的寻优能力。 To solve the problems such as the basic particle swarm algorithm's easy to fall into local extremum and its low accura- cy of multi-dimensional search, a new algorithm named position disturbed particle swarm optimization (PDPSO) is provided. Al- gorithm uses one or more random dimensions of the best positions of individual to produce disturbance for corresponding dimen5 sions of the best position of the group, the best position of the group learns from the best positions of individual more directly, and the algorithm jumps out of the local optimal. Finally, the results of some commonly used test functions presented shows that, PDPSO algorithm has a better global optimization capability than standard PSO algorithm in situations such as multi-peak and multi-dimensional searching problems.
作者 薛敬 靳雁霞
出处 《计算机工程与设计》 CSCD 北大核心 2014年第3期1037-1040,共4页 Computer Engineering and Design
基金 山西省自然科学基金项目(2013011017-7)
关键词 粒子群算法 个体最优位置 群体最优位置 扰动 随机维 particle swarm optimization the best position of individual the best position of group disturbance randomdimension
  • 相关文献

参考文献1

二级参考文献17

  • 1Pawlak Z. Rough Sets. International Journal of Computer and Infor- mation Sciences, 1982, 11 (5) : 341-356. 被引量:1
  • 2Pawlak Z. Rudiments of Rough Sets. Information Sciences, 2007, 177(1) : 3-27. 被引量:1
  • 3Kryszkiewicz M. Rough Set Approach to Incomplete Information Sys- tems. Information Sciences, 1998, 112(1/2/3/4):39-49. 被引量:1
  • 4Stefanowski J, Tsoukias A. Incomplete Information Tables and Rough Classification. Computational Intelligence, 2001, 17 ( 3 ) : 545 -566. 被引量:1
  • 5Greco S, Matarazzo B, Slowinski R. Rough Approximation by Domi- nance Relations. Intemational Journal of Intelligent Systems, 2002, 17(2) : 153-171. 被引量:1
  • 6Yang Xibei, Yang Jingyu, Wu Chen, et al. Dominance-Based Rough Set Approach and Knowledge Reductions in Incomplete Ordered Information System. Information Sciences, 2008, 178 (4) : 1219-1234. 被引量:1
  • 7Dubois D, Prade H. Rough Fuzzy Sets and Fuzzy Rough Sets. Inter- national Journal of General Systems, 1990, 17(2) : 191-209. 被引量:1
  • 8苗夺谦,王国胤,刘清,等.粒计算:过去、未来和展望.北京:科学出版社,2007. 被引量:1
  • 9Yao Y Y. Information Granulation and Rough Set Approximation. International Journal of Intelligent Systems, 2001, 16 ( 1 ) : 87 - 104. 被引量:1
  • 10Liang Jiye, Shi Zhongzhi. The Information Entropy, Rough Entro- py and Knowledge Granulation in Rough Set Theory. Intemational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004, 12(1) : 37-46. 被引量:1

共引文献46

同被引文献23

  • 1熊志辉,李思昆,陈吉华.具有初始信息素的蚂蚁寻优软硬件划分算法[J].计算机研究与发展,2005,42(12):2176-2183. 被引量:9
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3Kennedy J, Eberhart R. Particle swarm optimization [ C ]. In : Proc. of the IEEE Int'l Conf. on Neural Networks, Piscataway: IEEE Press, 1995 : 1942-1948. 被引量:1
  • 4Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better [ J ]. IEEE Trans. on Evolutionary Computa- tion ,2004,8 ( 3 ) :204-210. 被引量:1
  • 5Mohammad Reza Bonyadi,Xiang Li,Zbigniew Michalewicz. A hybrid particle swarm with a time-adaptive topology for constrained optimiza- tion[J ]. Swarm and Evolutionary Computation,2014,18:22-37. 被引量:1
  • 6Cheng Ran,Jin Yao-chu. A social learning particle swarm optimiza- tion algorithm for scalable optimization [ J ]. Information Sciences, 2015,291 ( 11 ) :43-60. 被引量:1
  • 7Yu Xiang, Zhang Xue-qing. Enhanced comprehensive learning par- ticle swarm optimization [ J ]. Applied Mathematics and Computa- tion, 2014,242 ( 8 ) : 265 -276. 被引量:1
  • 8Wei Hong Lim, Nor Ashidi Mat Isa. Teaching and peer-learning particle swarm optimization[ J]. Applied Soft Computing ,2014,18 (6) :39-58. 被引量:1
  • 9Sarthak Chatterjee a, Debdipta Goswami a, Sudipto Mukherjee a, Swagatam Das. Behavioral analysis of the leader particle during stagnationin a particle swarm optimization algorithm [ J ]. Informa- tion Sciences,2014,279 (9) : 18-36. 被引量:1
  • 10Min-Shyang Leu, Ming-Feng Yeh, Shih-Chang Wang. Particle swarm optimization with grey evolutionary analysis [ J ]. Applied Soft Computing ,2013,13 (10) :4047-4062. 被引量:1

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部