期刊文献+

基于免疫否定选择的机械运行状态评估 被引量:3

Assessment of the Mechanical Running Condition Based on Immune Negative Selection Algorithm
下载PDF
导出
摘要 异常运行状态数据获取困难是制约机械状态评估的主要因素。针对此问题,将模糊数学原理与基于免疫机理的否定选择算法应用于机械状态评估中,该算法在对机械正常运行数据学习的基础上就可对机械进行状态评估。通过对齿轮运行状态的检测结果表明,该方法对在异常数据缺乏的情况下的机械状态评估问题是可行有效的,为机械的状态评估提供了有效途径。 Shortage of abnormal condition samples is the main reasons that restricting the mechanical condition assessment.In order to solve this problem, the fuzzy mathematics principle and negative selection algorithm based on immune mechanism were used in the mechanical condition assessment, with this method, the mechanical condition assessment can be carried out on the basis of the data to the normal operation of mechanical learning .The detection results of the gear running show that the method is feasible and effective in the abnormal data under the condition of lack of mechanical state evaluation problem, and provides an effective way for machinery condition assessment.
出处 《机械研究与应用》 2014年第1期44-46,50,共4页 Mechanical Research & Application
关键词 机械状态评估 免疫机理 否定选择 machine condition assessment immune mechanism negative selection
  • 相关文献

参考文献15

二级参考文献86

共引文献489

同被引文献29

  • 1吴敏毓 刘恭植.医学免疫学[M].合肥:中国科学技术大学出版社,1995.1-219. 被引量:10
  • 2Charytoniuk W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting[J] IEEE Transaction on Power System, 1998, 13(3): 725-730. 被引量:1
  • 3Akagi H. New trends in active filter for power conditioning[J]. IEEE Transaction on Power Electronics 1996, 32(6): 1312-1322. 被引量:1
  • 4张海军.机械故障诊断和预测中的信息提取[D].西安:西安交通大学,2003. 被引量:1
  • 5Mastorocostas P A, Theocharis J B, Bakirtzis A G. Fuzzy modeling for short-term load forecasting using the orthogonal least squares method[J]. IEEE Transaction on Power System, 1999, 14(1): 29-36. 被引量:1
  • 6Kuo 1 J, Hung S Y, Cheng W C. Application of an optimization artificial immune network and parti- cle swarm optimization-based fuzzy neural network to an RFID-based positioning system[J]. Information Sciences, 2014, 262:78-98. 被引量:1
  • 7Acilar A M, Arslan A. A novel approach for designing adaptive fuzzy classifiers based on the combination of an artificial immune network and a memetic algorithm[J]. Information Sciences, 2014, 264:158-181. 被引量:1
  • 8Kuo R J, Pai C M, Lin R H, et al. The integration of association rule mining and artificial immune network for supplier selection and order quantity allocation[J]. Applied Mathematics and Computation, 2015, 250(1): 958-972. 被引量:1
  • 9Kahramanli H, Allahverdi N. Rule extraction from trained adaptive neural networks using artificial immune systems[J]. Expert Systems with Applications, 2009, 36(2): 1513-1522. 被引量:1
  • 10Chow T W S, Leung C T. Neural network based short-term load forecasting using weather compensation[J]. IEEE Transaction on Power System, 1996, 11(4): 1736-1742. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部