期刊文献+

一类A-调和方程的障碍问题的很弱解的全局正则性 被引量:6

Global Regularity for Very Weak Solutions to Obstacle Promlems Corresponding to a Class of A-Harmonic Equations
下载PDF
导出
摘要 应用Hodge分解定理,得到了非齐次A-调和方程-div(A(x,Du(x)))=f(x,u(x))对应的障碍问题很弱解的局部和全局的W^(1,q)(Ω)-正则性,其中,A(x,Du(x)),f(x,u(x))满足文中所给的条件,从而推广了相关文献中的有关结果.该结果在优化控制问题中有着广泛的应用. Abstract: Using Hodge decomposition theorem, the local and the global wl,q(Ω)-regularity results for very weak solutions to the obstacle problems associated with the following non- homogeneous A-harmonic equations-div(A(x,Du(x)))=f(x,u(x))are obtained under certain conditions on A (x,Du(x)))=f(x,u(x))listed in the context. Theresults generalize the corresponding results in related literatures. The results can be widely applied to optimal control problems.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第1期27-38,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11271120 10971061) 湖南省自科基金(11JJ6005) 湖南省重点学科建设项目 湖南师范大学青优培养计划(080640)资助
关键词 非齐次A-调和方程 障碍问题 优化控制 HODGE分解 全局W1 q(Ω)-正则性 Non-homogeneous A-harmonic equations Obstacle problems Optimal control Hodge decomposition Global wl,q(Ω)-regularity.
  • 相关文献

参考文献5

二级参考文献43

  • 1Iwaniec T, Sbordone C. Weak minima of variational integrals. J Reine Angew Math, 1994, 454:143-161. 被引量:1
  • 2Meyers N G, Elcrat A. Some results on regularity for solutions of nonlinear elliptic systems and quasiregular functions. Duke Math J, 1975, 42:121-136. 被引量:1
  • 3Stredulinsky E W. Higher integrability from reverse H61der inequalities. Indiana Univ Math J, 1980, 29: 408-413. 被引量:1
  • 4Li G B, Martio O. Local and global integrability of gradients in obstacle problems. Ann Acad Sci Fenn Ser A I Math, 1994, 19:25-34. 被引量:1
  • 5Lewis J L. On very weak solutions to certain elliptic systems. Comm Part Diff Eqns, 1993, 18:1515-1537. 被引量:1
  • 6Li J, Gao H Y. Local regularity result for very weak solutions of obstacle problems. Radovi Mat, 2003, 12:19-26. 被引量:1
  • 7Giaquinta M, Giusti E. On the regularity of the minima of variational integrals. Acta Math, 1982, 148: 31-46. 被引量:1
  • 8Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation. Nonlinear Analysis T M A, 2000, 39:463-482. 被引量:1
  • 9Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton Univ Press, 1983. 被引量:1
  • 10Iwaniec T, Migliaccio L, Nania L, Sbordone C. Integrability results for quasiregular mappings in high dimensions. Math Scand, 1994, 75:263-279. 被引量:1

共引文献11

同被引文献11

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部