期刊文献+

利用统计概率的活动轮廓模型分割图像 被引量:2

Active contour model for image segmentation using statistical probability
下载PDF
导出
摘要 活动轮廓模型分割图像依赖于图像目标区域和背景区域灰度的可分性,当图像结构复杂时分割结果往往不理想。可以利用图像变换得到图像特征向量,再研究图像特征向量和图像目标区域的隶属关系。把图像特征向量通过概率密度形成外力场集成到活动轮廓模型。这种改进的活动轮廓模型在图像分割中可以包含较多的图像分割信息,较强的抗噪声干扰性能,能对多种类型图像进行分割,同时它是图像分割活动轮廓模型的推广。对弱边缘区域、纹理图像、遥感图像的分割实验说明改进的活动轮廓模型有良好的分割性能和效果。 Active contour model for image segmentation depends on reparability of gray between the target region and the background. When the structures of images are complexity, the results of segmentation are often not ideal using active contour model. When image feature vectors are obtained by image transform, image feature vector affiliation with the target region are studied. The force field is formed by the probability density of the image feature vector. New force fields serve as external force field of active contour model This active contour model for image segmentation can contain more information of image, improve performance of anti-noise and extends types of image for image segmentation. At the same time it is the promotion of active contour models for image segmentation. Experimental results show that improved active contour model has good performance and effectiveness of image segmentation to weak edge region, the texture image and remote sensing image.
出处 《中国农机化学报》 北大核心 2014年第1期112-116,128,共6页 Journal of Chinese Agricultural Mechanization
基金 国家自然科学基金项目(60973094)
关键词 图像分割 活动轮廓模型 特征向量 统计概率 image segmentation active contour model feature vector statistical probability
  • 相关文献

参考文献5

  • 1Kaihua Zhang,Huihui Song,Lei Zhang.Active contours driven by local image fitting energy[J].Pattern Recognition.2009(4) 被引量:1
  • 2Thomas Brox,Mika?l Rousson,Rachid Deriche,Joachim Weickert.Colour, texture, and motion in level set based segmentation and tracking[J].Image and Vision Computing.2009(3) 被引量:1
  • 3Zheng Ying,Li Guangyao,Sun Xiehua,Zhou Xinmin.Geometric active contours without re-initialization for image segmentation[J].Pattern Recognition.2009(9) 被引量:1
  • 4Mohand Sa?d Allili,Djemel Ziou.Globally adaptive region information for automatic color–texture image segmentation[J].Pattern Recognition Letters.2007(15) 被引量:1
  • 5David A. Clausi,M. Ed Jernigan.Designing Gabor filters for optimal texture separability[J].Pattern Recognition.2000(11) 被引量:1

同被引文献29

  • 1司永胜,刘刚,高瑞.基于K-均值聚类的绿色苹果识别技术[J].农业机械学报,2009,40(S1):100-104. 被引量:50
  • 2Otsu N. A threshold selection method from gray-level histogram[ J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62-66. 被引量:1
  • 3Rafael C Gonzalez, Richard E Woods. Digital image processing [ M ]. 3rd ed. Beijing: Electronics Industry Publish House, 2011:421 - 426. 被引量:1
  • 4CaseUes V, Kimmel R, Sapiro G. Geodesic active contours [J ]. International JournM of Computer Vision, 1997, 22( 1 ) : 61 -79. 被引量:1
  • 5Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level set evolution without re-initialization: a new variational formulation [ C ]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2005 : 430 - 436. 被引量:1
  • 6Li Chunming, Xu Chenyang, Gui Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[ J]. IEEE Transactions on Image Processing, 2010, 19(12) :3243 - 3254. 被引量:1
  • 7l.i Chuwming, Xu Chen-yang, (;ui Chang-feng, et al. l.evel Set Evolution Without Re-initialization [C]//A New Variational Formulation Proceedings of the 2005 IEEE Computer .Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE,2005. 被引量:1
  • 8Chan T, Vese L. Active contours without edges [J]. IEEE Trans. Imag. Proc. ,2001,10:266-277. 被引量:1
  • 9Li Chun-ming,Xu Chen-yang, Member S. el al. ]EEE Dislance Regularized Level Set Evolution and Its Application to Image Segmentation [J]. IEEE Transactions on Image Processing, 2010,19(12) : 3243-325. 被引量:1
  • 10Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithm[M]. New York Springer-Verlag, 1981. 被引量:1

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部