摘要
玉米螟是玉米种植中的主要虫害之一。为了解决人工识别的劳动强度大,且识别不够准确、及时的问题,文中提出了一种在自然场景下基于多生长时期模板匹配的不同生长时期亚洲玉米螟的识别方法。该方法首先对获取到的图像进行数学形态学预处理;其次利用直方图反向映射法和多模板图像得到总的概率图像;然后利用约束空间的大津法对二值图像进行轮廓提取,并根据周长和面积特征进行初步筛选;最后结合基准轮廓,利用Hu矩等特征选出符合亚洲玉米螟特征的轮廓,进而得出识别结果并以三角形标记。实验和理论分析证明,在复杂自然场景图像中,该方法不仅时效性强,而且具有很好的识别准确度,能够有效降低不同生长时期的玉米螟颜色变化带来的影响。
Corn borer is one of main pests encountered in the corn.In order to solve the problems of high labor intensity,inaccuracy,and being not in time in artificial recognition,a novel identification method for Asiatic corn borer was proposed under natural scenes in this paper,which is based on reverse mapping of histogram and multi-template matching of contours.Firstly,this method performs mathematical morphology preprocessing for the obtained image.Secondly,the total probability image is obtained by using reverse mapping of histogram method and multi-template images,and then image contour can be extracted quickly and accurately by using constraint Otsu,and can be preliminary filtrated according to the perimeter and area characteristics of corn borer.Finally,the contours matched with the characteristics of Asiatic corn borer are selected by using Hu moment characters between multiple reference contours and the obtained target contours,and then identification results with triangle mark are obtained.The experimental results and theoretical analysis show that the proposed method has high timeliness and high recognition accuracy in complex natural scenes.
作者
刘博艺
唐湘滟
程杰仁
LIU Bo-yi; TANG Xiang-yan;CHENG Jie-ren(College of Information Science&Technology,Hainan University,Haikou 570228,China;University of Chinese Academy of Sciences,Beijing 100000,China;State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University,Haikou 570228,China)
出处
《计算机科学》
CSCD
北大核心
2018年第4期106-111,142,共7页
Computer Science
基金
国家自然科学基金(61363071
61762033)
海南省自然科学基金(617048)
海南大学博士启动基金(kyqd1328)
海南大学青年基金(qnjj14444)
海南大学研究生实践创新项目基金资助
关键词
虫害识别
玉米螟
直方图反向映射
模板匹配
HU矩
Insect pests recognition
Corn borer
Reverse mapping of histogram
Template matching
Hu moment