期刊文献+

基于监督判别局部保持投影的表情识别算法 被引量:2

Expression recognition algorithm based on supervised discriminat locality preserving projection
下载PDF
导出
摘要 LPP算法是无监督算法,并没有考虑到不同类别的样本对分类效果的影响,结果会造成不同类数据点的重叠,故所获得的子空间对于分类问题来说未必是最优的。提出一种新的基于监督判别局部保持投影(SDLPP)的表情识别算法。利用样本的类别信息重新构造LPP算法中的相似矩阵,然后在目标函数中增加类间散度约束,这样就会在保持样本点局部结构的同时,使不同类的样本点相互远离,从而得到更具有判别性的表情特征。该算法在识别率上比其他方法都有较大提高,通过在JAFFE表情库上的实验验证了其有效性。 Locality Preserving Projection(LPP)algorithm is unsupervised, which does not take into account the impact on different classes of samples on the classification effect and results in the overlap of the data points for different classes, so the sub-space for classification problems may not be optimal. This paper proposes a new expression recognition algorithm based on Supervised Discriminative Locality Preserving Projection(SDLPP). The algorithm firstly makes use of the classi-fication information of samples to reconstruct the similarity matrix of LPP, and then adds between-class scatter constraint into the objective function. This will make sample points of different classes away from each other when preservers them in local structure, so as to get more discriminative expression feathers. The method improves recognition rate than others, and the results of the experiments on JAFFE database indicate that it is effective.
出处 《计算机工程与应用》 CSCD 2014年第1期195-199,共5页 Computer Engineering and Applications
基金 甘肃省自然科学基金(No.1014RJZA009 No.1112RJZA029) 甘肃省高等学校基本科研业务费项目(No.1114ZTC144)
关键词 局部保持投影 有监督学习 类间散度约束 表情识别 LOCALITY PRESERVING Projection(LPP) supervised learning between-class scatter constraint expression recognition
  • 相关文献

参考文献12

  • 1Ekman P, Friesen W V.Constants across cultures in the face and emotion[J].Journal of Personality and Social Psychology, 1971,17(2) : 124-129. 被引量:1
  • 2薛雨丽,毛峡,郭叶,吕善伟.人机交互中的人脸表情识别研究进展[J].中国图象图形学报,2009,14(5):764-772. 被引量:48
  • 3李波..基于流形学习的特征提取方法及其应用研究[D].中国科学技术大学,2008:
  • 4朱明旱..基于流形学习的人脸表情识别研究[D].中南大学,2009:
  • 5朱明旱,罗大庸.基于流形的表情分解算法[J].计算机工程与应用,2008,44(23):203-205. 被引量:2
  • 6Tenenbaum J B,De Silva V,Langford J C.A global geo- metric framework for nonlinear dimensionality reduction[J]. Science, 2000,290 : 2319-2323. 被引量:1
  • 7Roweis S L, Saul L.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000,290 : 2323-2326. 被引量:1
  • 8Belkin M,Niyogi P.Laplacian eigenmaps for dimension- ality reduction and data representation[J].Neural Compu- tation,2003,15(6) ~ 1373-1396. 被引量:1
  • 9Yang M H.Kernel eigenfaces vs.kernel fisherfaces: face recognition using kernel methods[C]//Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington DC:IEEE Computer So- ciety, 2002 : 215-220. 被引量:1
  • 10He Xiaofe,Niyogi P.Locality preserving projections[C]// Proc of the Conference on Neural Information Processing Systems, Vancouver, Canada, 2003 : 153-160. 被引量:1

二级参考文献102

  • 1薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 2Ekman P.Facial expressions of emotion:an old controversy and new findings[J].Philosophical Transactions of the Royal Society, 1992,335:63-69. 被引量:1
  • 3Tian Y,Kanade T,Cohn J.Recognizing action units for facial expression analysis[J].IEEE PAMI,2001,23(2):97-115. 被引量:1
  • 4Aless L F,Rorreves.A neural network facial expression recognition system using unsupervised local processing[C]//Proceedings of the Second ISISPA,2001:628-632. 被引量:1
  • 5Cohen I,Sebe N,Garg A,et al.Facial expression recognition from video sequences:temporal and static modeling [J].CVIU, 2003,91 ( 1 ) : 160-187 被引量:1
  • 6Fasel B,Luettin J.Automatic facial expression analysis:a survey[J]. Pattern Recognition, 2003,36 : 259-275. 被引量:1
  • 7Vasilescu M A O,Terzopoulos D.Multilinear analysis of image ensembles:tensor faces[C]//ECCV, 2002( 1 ) : 447-460. 被引量:1
  • 8de Lathauwer L,de Moor B,Vandewalle J.A multilinear singular value decomposition[J].SIAM Journal of Matrix Analysis and Applications, 2000,21 (4) : 1253-1278. 被引量:1
  • 9Wang H,Ahuja N.Facial expression decomposition[C]//Intemational Conference on Computer Vision, 2003 : 958-965. 被引量:1
  • 10Gralewski L,Campbell N,Voak I P.Using a tensor framework for the analysis of facial dynamics[C]//Proc of 7th International Conference of Automatic Face and Gesture Recognition,2006:217-222. 被引量:1

共引文献54

同被引文献18

  • 1Mokhtarian F, Abbasi S. Matching shapes with self-intersection: application to leaf classification[J]. IEEE Transaction on Image Processing, 2004, 13(5): 653-661. 被引量:1
  • 2Li Yunfeng, Zhu Qingsheng, Cao Yukun, et al. A leaf vein extraction method based on snakes technique[C]. Proceedings of IEEE International Conference on Neural Networks and Brain, Beijing, 2005: 885-888. 被引量:1
  • 3Bruno O M, Plotze R O, Falvo M, et al. Fractal dimension applied to plant identification[J]. Information Science, 2008, 178(12): 2722-2733. 被引量:1
  • 4Wang Xiaofeng, Huang Deshuang, Du Jixiang, et al. Classification of plant leaf images with complicated background[J]. Applied Mathematics and Computation, 2008, 205(2): 916-926. 被引量:1
  • 5Du Jixiaong, Huang Deshuang, Wang Xiaofeng, et al. Computer-aided plant species identification (CAPSI): Based on leaf shape matching technique[J]. Transactions of the Institute of Measurement and Control, 2006, 28(3): 275-284. 被引量:1
  • 6Du Jixiang, Huang Deshuang, Gu Xiao. Matching, recognition and retrieval of occluded shapes using modified dynamic programming algorithm[J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms, 2007,14(Supp.2): 136-143. 被引量:1
  • 7Du Jixiaong, Zhai Chuangmin. Plant species recognition based on radial basis probabilistic neural networks ensemble classifier[C]. Lecture Notes in Artificial Intelligence, Changsha, 2010, 6216: 677-681. 被引量:1
  • 8Yan Yan, Zhang Yujin. Discriminant projection embedding for face and palmprint recognition[J]. Neurocomputing, 2008, 71(16/17/18): 3534-3543. 被引量:1
  • 9Goldberger J, Roweis S, Hinton G, et al. Neighborhood components analysis[C]. Advances in Neural Information Processing Systems 17, Vancouver, Canada: MIT Press, 2004: 513-520. 被引量:1
  • 10Tony Chan, Zhu Wei. Level set based shape prior segmentation[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR2005), San Diego, 2005, 2: 1164-1170. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部