期刊文献+

p(x)-Laplacian方程爆破解的存在性及渐近行为

Existence and Asymptotic Behavior of Blow-up Solutions for p( x)-Laplacian Problem
下载PDF
导出
摘要 通过对Keller-Osserman条件进行简化得到了一类p(x)-Laplacian方程边界爆破解的存在性,该方程变形为径向对称形式,经一系列推导运算,给出了边界爆破解的渐近性质. The existence of blow-up solutions for p (x) Osserman condition. After the equation is transformed solutions is given by a series of derivation operation. -Laplacian equation is obtained by simplifing the Keller- into radial symmetry, the asymptotic property of blow-up
出处 《鲁东大学学报(自然科学版)》 2014年第1期12-15,共4页 Journal of Ludong University:Natural Science Edition
基金 国家自然科学基金(11201213 11371183) 山东省自然科学基金(ZR2010AM022) 山东省优秀中青年科学家科研奖励基金(BS2011SFOO4)
关键词 p(x)-Laplacian方程 爆破解 渐近行为 p (x) -Laplacian equation blow-up solutions asymptotic behavior
  • 相关文献

参考文献9

  • 1Keller J B. On solutions of Δu = f(u) [ J ]. Communications on Pure and Applied Mathematics, 1957,10 (4) :503-510. 被引量:1
  • 2Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory[J]. Math USSR Izv,1987,29( 1 ) :33-66. 被引量:1
  • 3Rozicka M. Electrorheological Fluids : Modeling and Mathematical Theory [ M ]. Berlin : Springer-Verlag, 2000. 被引量:1
  • 4Fan Xianling, Zhang Qihu. Existence of solutions for p (x) -Laplacian Dirichlet problem [ J ]. Nonlinear Analysis : Theory, Methods and Applications,2003,52 ( 8 ) : 1843-1852. 被引量:1
  • 5范先令,赵敦.p(x)-Laplace方程的弱解的局部C^(1,α)正则性[J].甘肃教育学院学报(自然科学版),2001,15(2):1-5. 被引量:3
  • 6del Pino M, Musso M. Bubbling and criticality in two and higher dimensions[ M] JJRecent Advances in Elliptic and Para- bolic Problems, Hackensack, NJ : World Scitific Publishing Co. ,2005:41-59. 被引量:1
  • 7张启虎.p(x)-Laplace方程爆炸解的存在性[J].徐州师范大学学报(自然科学版),2006,24(1):19-22. 被引量:2
  • 8Fan Xianling, Zhao Dun. On the spaces Lp(x) (Ω) and Wm,p(x) (Ω) [ J ]. J Math Anal Appl,2001,263 (2) :424-446. 被引量:1
  • 9Zhang Qihu. Existence and asymptotic behavior of blow-up solutions to a class ofp (x) -Laplacian problems[ J ].J Math Anal Appl,2007,329 ( 1 ) :472-482. 被引量:1

二级参考文献14

  • 1张启虎.具变号系数的p(x)-Laplace方程解的存在性(英文)[J].徐州师范大学学报(自然科学版),2005,23(3):19-25. 被引量:4
  • 2Ladyzenskaja O A 严子谦等(译).线性和拟线性椭圆型方程[M].北京:科学出版社,1987.272-274,351-371. 被引量:2
  • 3Zhikov V V.Averaging of functionals of the calculus of variations and elasticity theory[J].Math USSR Izv,1987,29(8):33. 被引量:1
  • 4Ruzicka M.Electrorheological fluids modeling and mathematical theory[M].Berlin:Springer-Verlag,2000. 被引量:1
  • 5Fan Xianling,Zhao Dun.On the spaces L^p(x) (Ω) and W^m,p(x) (Ω)[J].J Math Anal Appl,2001,263(2):424. 被引量:1
  • 6Fan Xianling,Zhao Dun.A class of de Giorgi type and Holder continuity[J].Nonlinear Anal TMA,1999,36 (3):295. 被引量:1
  • 7Zhao Dun.The local regularity of weak solutions of elliptic equations of divergence form with p(x)-growth conditions[D].Lanzhou:Lanzhou University,1998. 被引量:1
  • 8Fan Xianling,Zhang Qihu.Existence of solutions for p(x)-Laplacian Dirichlet problem[J].Nonlinear Anal,2003,52(8):1843. 被引量:1
  • 9Alan V L.A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations[J].J Math Anal Appl,1999,240 (1):205. 被引量:1
  • 10Ahmed M.Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations[J].J Math Anal Appl,2004,298 (2):621. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部