期刊文献+

面向微博内容的信息抽取模型研究 被引量:5

Research on Information Extration Model for Microblog Content
下载PDF
导出
摘要 社会媒体是人们用来分享意见、见解、观念和经验的平台或工具,目前已经发展成具有重大影响力的新媒体。而微博作为社会媒体的一个重要部分,对信息的传播起到了很大的作用。面向微博内容的信息抽取就是要从充满噪音的、零碎的、非结构化的微博内容的自由文本中提取有价值的结构化的信息,以利于从微博内容中有效地获取信息。提出了一种基于因子图的微博事件抽取方法来准确地抽取微博中所反映的事件。最后通过实验验证了该方法在性能和准确性上都比其他的方法要高。 Social media is the platform or tool that people use to share opinions, insights, ideas and experience. It has be- come the new media having great influence. Microblogging is an important part of social media, so it will play an impor- tant role in the information transfer. Microblogged content-oriented information extraction is to extract the valuable structred information from free text of full of noise, loose, unstructured microblogging content to facilitate effective ac- cess to information from Twitter content. This paper proposed a microblogging event extraction based on factor graph approach to accurately extract the events reflected in microblogging. At last we used some experiments to verify the ef- fectiveness of the methods, and the results show that the performance and accuracy of this method is higher than other methods.
作者 郑影 李大辉
出处 《计算机科学》 CSCD 北大核心 2014年第2期270-275,共6页 Computer Science
基金 齐齐哈尔大学青年教师科研启动支持计划项目(2011k-M03) 黑龙江省自然科学基金项目(F201218)资助
关键词 社会媒体 微博 事件抽取 因子图 Social media, Mieroblog, Event extraction, Factor graph
  • 相关文献

参考文献24

  • 1Wikipedia. Facebook user statistics [OL], http://en, wikipe- dia. org/wiki/Facebook, 2013. 被引量:1
  • 2Wikipedio. Twitter user statistics[OL], http://en, wikipedia. org/wiki/twitter, 2013. 被引量:1
  • 3How many Twitter Users Are There 2012i,OL]. http://www. howmanyarethere, org/how-many-twitter-users-are-there:2012 / 2/, 2013. 被引量:1
  • 4How Many Facebook Users Are There [OL]. http://www. howmanyarethere, org/how-many- facebook-users-are-there-2012/, 2013. 被引量:1
  • 5Settles B. Biomedical named entity recognition using conditional random fields and rich feature sets[C]//Proceedings of the In- ternational Joint Workshop on Natural Language Processing in Biomedicine and its Applications. Association for Computational Linguistics, 2004 : 104-107. 被引量:1
  • 6Xiao J, Su J, Zhou G, et al. Protein-protein interaction extrac- tion:a supervised learning approach[C]//Proc Syrnp on Seman- tic Mining in Biomedicine. 2005:51-59. 被引量:1
  • 7Richardson M, Domingos P. Markov logic networks [J]. Ma- chine learning, 2006,62 (1/2) : 107-136. 被引量:1
  • 8Casella G, George E I. Explaining the Gibbs sampler [J]. The American Statistician, 1992,46(3) : 167-174. 被引量:1
  • 9McClosky D, Charniak E, Johnson M. Effective self-training for parsing[C]//Proceedings of the main conference on human lan- guage technology conference of the North American Chapter of the Association of Computational Linguistics. Association for Computational Linguistics, 2006 : 152-159. 被引量:1
  • 10Yates A,Cafarella M, Banko M, et al. TextRunner: open infor- mation extraction on the Web[C]//Proceedings of Human Lan-guage Technologies: The Annual Conference of the North A- merican Chapter of the Association for Computational Linguis- tics: Demonstrations. Association for Computational Linguistics, 2007 : 25-26. 被引量:1

二级参考文献2

共引文献11

同被引文献43

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部