期刊文献+

SVM+BiHMM:基于统计方法的元数据抽取混合模型 被引量:27

SVM+BiHMM: A Hybrid Statistic Model for Metadata Extraction
下载PDF
导出
摘要 提出了一种SVM+BiHMM的混合元数据自动抽取方法.该方法基于SVM(support vector machine)和二元HMM(bigram HMM(hidden Markov model),简称BiHMM)理论.二元HMM模型BiHMM在保持模型结构不变的前提下,通过区分首发概率和状态内部发射概率,修改了HMM发射概率计算模型.在SVM+BiHMM复合模型中,首先根据规则把论文粗分为论文头、正文以及引文部分,然后建立SVM模型把文本块划分为元数据子类,接着采用Sigmoid双弯曲函数把SVM分类结果用于拟合调整BiHMM模型的单词发射概率,最后用复合模型进行元数据抽取.SVM方法有效考虑了块间联系,BiHMM模型充分考虑了单词在状态内部的位置信息,二者的元数据抽取结果得到了很好的互补和修正,实验评测结果表明,SVM+BiHMM算法的抽取效果优于其他方法. This paper proposes SVM+BiHMM, a hybrid statistic model of metadata extraction based on SVM (support vector machine) and BiHMM (bigram HMM (hidden Markov model)). The BiHMM model modifies the HMM model with both Bigram sequential relation and position information of words, by means of distinguishing the beginning emitting probability from the inner emitting probability. First, the rule based extractor segments documents into line-blocks. Second, the SVM classifier tags the blocks into metadata elements. Finally, the SVM+BiHMM model is built based on the BiHMM model, with the emitting probability adjusted by the Sigmoid function of SVM score, and the transition probability trained by Bigram HMM. The SVM classifier benefits from the structure patterns of document line data while the Bigram HMM considers both words' Bigram sequential relation and position information, so the complementary SVM+BiHMM outperforms HMM, BiHMM, and SVM methods in the experiments on the same task.
出处 《软件学报》 EI CSCD 北大核心 2008年第2期358-368,共11页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.90412010 60573166 (国家自然科学基金) the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.2007108 (高等学校博士学科点专项科研基金) the HP University Collaborative Foundation of China under Grant No.HLCFY08-001 (惠普大学合作基金)
关键词 元数据抽取 基于规则的信息抽取 支持向量机 隐马尔科夫模型 二元 HMM模型 metadata extraction rule based information extraction SVM (support vector machine) HMM (hidden Markov model) BiHMM (bigram hidden Markov model)
  • 相关文献

参考文献22

  • 1Morville P, Rosenfeld L. Information Architecture for the World Wide Web: Designing Large-Scale Web Site. 3rd ed., Sebastopol: 0'Reilly&Associates, 2006. 被引量:1
  • 2Chidlovskii B Wrapping web information providers by transducer induction. In: Racdt L, Flach P, eds. Proc of the 12th Int'l of European Conf. on Machine Learning (ECML 2001). LNCS 2167, Heidelberg: Springer-Verlag, 2001.61-72. 被引量:1
  • 3Hitchcock S, Carr L, Jiao Z, Bergmark D, Hall W, Lagoze C, Harnad S. Developing services for open eprint archives: Globalisation, integration and the impact of links. In: Proc. of the 5th ACM Conf. on Digital Libraries (ACMDL 2000). New York: ACM Press, 2000. 143-151. 被引量:1
  • 4Klink S, Dengel A, Kieninger T. Rule-Based document structure understanding with a fuzzy combination of layout and textual features. Int'l Journal on Document Analysis and Recognition, 2001,4( 1): 18-26. 被引量:1
  • 5Kim J, Le DX, Thoma GR. Automated labeling algorithms for biomedical document images. In: Proc. of the 7th World Multiconference on Systemics, Cybernetics and Informatics. Orlando: ⅢS, 2003. 352-357. 被引量:1
  • 6Zhang M, Yang DQ, Deng ZH, Feng Y, Wang WQ, Zhao PX, Wu S, Wang SA, Tang SW. PKUSpace: A collaborative platform for scientific researching. In: Liu WY, Shi YC, Li Q, eds. Proc of the Int'l Conf. of Web-based Learning (ICWL 2004). LNCS 3143, Heidelberg: Springer-Verlag, 2004. 120-127. 被引量:1
  • 7Zhao PX, Zhang M, Yang DQ, Tang SW. Automatic extraction of metadata from digital documents. Computer Science, 2003, 30(10):217-204 被引量:1
  • 8Bikel DM, Miller S, Schwartz R, Weischedel R. Nymble: A high performance learning name finder. In: Proc. of the 5th Conf. on Applied Natural Language Processing (ANLC'97). San Francisco: Morgan Kaufmann Publishers, 1997. 194-201. 被引量:1
  • 9Seymore K, McCallum A, Rosenreid R. Learning hidden Markov model structure for information extraction. In: Califf ME, Freitag D, Kushmerick N, Muslea I, eds. Proc. of the AAAI'99 Workshop on Machine Learning for Information Extraction. Cambridge: MIT Press, 1999.37-42. 被引量:1
  • 10Borkar VR, Deshmukh K, Sarawagi S. Automatic segmentation of text into structured records. In: Aref WG, ed. Proc. of the ACM-SIGMOD Int'l Conf. Management of Data (SIGMOD 2001). New York: ACM Press, 2001. 175-186. 被引量:1

同被引文献301

引证文献27

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部