期刊文献+

基于稀疏表示的相干分布式非圆信号的参数估计 被引量:11

Parameters Estimation of Coherently Distributed Non-circular Signal Based on Sparse Representation
下载PDF
导出
摘要 基于稀疏表示技术,该文提出一种相干分布式非圆信号的参数估计新方法。该方法将信号的非圆特性引入分布式信源模型,充分利用非圆信号的特性,联合阵列输出协方差矩阵和椭圆协方差矩阵,并将其矢量化之后表示在受制于稀疏限制的过完备字典上;然后将DOA估计转化为一个稀疏重构问题,能够一次性求解出中心DOA和角度扩展。仿真结果表明,该方法适用于各种非圆率的非圆信号,具有较好的信噪比性能和分辨力,所提出的方法还能对圆和非圆信号同时存在的情况进行有效估计。 A novel method for parameters estimation of coherently distributed non-circular signal based on the concept of sparse representation is proposed. The non-circular property is introduced into the model of distributed source, and the non-circular property is fully used to unite the covariance and elliptic covariance matrix of the array output. By representing them on overcomplete dictionaries subject to sparse constraint, and transforming DOA estimation into a sparse reconstruction problem, the method is able to solve the central DOA and angular spread at a time. Simulation results show that the proposed method can be used in different kinds of non-circular rate with better performance of low SNR and resolution, and the proposed algorithm can also effectively estimate the DOA in the case of both circular and non-circular signal existing.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第1期164-168,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61301155 61176025)资助课题
关键词 信号处理 波达方向估计 相干分布式信号 非圆信号 角度扩展 Signal processing DOA estimation Coherently distributed signal Non-circular signal Angular spread
  • 相关文献

参考文献17

  • 1Zoubir A, Wang Y, and Charge P. On the ambiguity of COMET-EXIP algorithm for estimating a scattered source[J].Signal Processing, 2006, 86(2): 733- 743. 被引量:1
  • 2Zheng Zhi, Li Guang-jun, and Teng Yun-long. Low-complexity 2D DOA estimator for multiple coherently distributed sources[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering COMPEL, 2012, 31(2): 443-459. 被引量:1
  • 3Zheng Zhi, Li Guang-jun, and Teng Yun-long. 2D DOA estimator for multiple coherently distributed sources using modified propagator[J]. Circuits, Systems and Signal Processing, 2012, 31(1): 255-270. 被引量:1
  • 4Xu X. Spatially-spread sources and the SMVDR estimator[C]. 4th IEEE Workshop on Signal Processing Advances in Wireless Communications, Rome, Italy, 2003: 639-643. 被引量:1
  • 5Gounon P, Adnet C, and Galy J. Localization angulaire de signaux non circulaires[J]. Traitement du Signal, 1998, 15(1): 17-23. 被引量:1
  • 6Abeida H and Delmas J. MUSIC-like estimation of direction of arrival for noncircular sources[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2678-2690. 被引量:1
  • 7Gao F, Wang Y, and Nallanathan A. Improved MUSIC by exploiting both real and complex sources[C]. MILCOM: IEEE Military Communications Conference, Washington DC USA. 2006: 1-6. 被引量:1
  • 8Malioutov D, Cetin M, and Willsky A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 9Hyder M and Mahata K. Direction-of-arrival estimation using a mixed 2.0 norm approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4646-4655. 被引量:1
  • 10Guo X, Wan Q, Wu B, et al.. Parameters localization of coherently distributed sources based on sparse signal representation[J]. IET Radar, Sonar & Navigation, 2007, 1(4) :261-265. 被引量:1

二级参考文献10

  • 1Asztely D and Ottersten B. The effects of local scattering on direction of arrival estimation with MUSIC and ESPRIT. Proceedings of International Conference on Acoustics, Speech and Signal Processing 1998, Seattle, Washington, 1998:3333-3336. 被引量:1
  • 2Shahbazpanahi S and Valaee S. A new approach to spatial power spectral density estimation for multiple incoherently distributed sources. Proceedings of International Conference on Acoustics, Speech and Signal Processing 2007, Honolulu, hawau. 2007: 1133-1136. 被引量:1
  • 3Christou C T and Jacyna G M. Simulation of the beam response of distributed signals. IEEE Trans. on Signal Processing, 2005, 53(8): 3023-3031. 被引量:1
  • 4Hassanien A, Shahbazpanahi S, and Gershman A B. A generalized Capon estimator for localization of multiple spread sources. IEEE Trans. on Signal Processing, 2004,52(1): 280-283. 被引量:1
  • 5Shahbazpanahi S, Valaee S, and Bastani M H. Distributed source localization using ESPRIT algorithm. IEEE Trans. on Signal Processing, 2001, 49(10): 2169-2178. 被引量:1
  • 6Zoubir A, Wang Y, and Charge P. Spatially distributed sources localization with a subspace based estimator without eigendecomposition. Proceedings of International Conference on Acoustics, Speech and Signal Processing 2007, Honolulu, hawaii, 2007: 1085-1088. 被引量:1
  • 7Shahbazpanahi S, Valaee S, and Gershman A B. A covariance fitting approach to parametric localization of multiple incoherently distributed Sources. IEEE Trans. on Signal Processing, 2004, 52(3): 592-600. 被引量:1
  • 8Lee J, Song L, Kwon H, and Lee S R. Low-complexity estimation of 2D DOA for coherently distributed sources. Signal Processing, 2003, 83(8): 1789-1802. 被引量:1
  • 9Gradshteyn I S and Ryzhik I M. Table of Integrals, Series, and Products(7th Edition). Orlando: Academic Press, 2007: 438. 被引量:1
  • 10Marcos S, Marsal A, and Benidir M. The propagator method for source bearing estimation. Signal Processing, 1995, 42(2): 121-138. 被引量:1

共引文献6

同被引文献76

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部