期刊文献+

基于非线性频谱数据驱动的动态系统故障诊断方法 被引量:10

Fault diagnosis approach of dynamic system based on data driven of nonlinear spectrum
原文传递
导出
摘要 基于非线性频谱数据驱动方法,研究了动态系统的故障诊断问题.利用一维非线性输出频率响应函数提出一种非线性频谱特征提取方法,为了提高实时性,采用变步长自适应辨识算法进行求解;根据估计偏差实时地改变步长,兼顾了收敛速度与稳态误差;获取了非线性频谱特征之后,利用最小二乘支持向量机分类器进行故障识别.通过对提升设备的故障诊断问题进行实验研究,所得结果表明,所提出的算法识别率高,能满足在线诊断要求. The problem of fault diagnosis for the dynamic system is studied based on the data driven method of nonlinear spectrum. An extraction method of nonlinear frequency spectrum feature is proposed by using one dimensional nonlinear output frequency response function. In order to improve timeliness, the variable step size adaptive identification algorithm is used to solve the nonlinear output frequency response function. The step size is changed according to estimating error so that convergence rate and steady state error are both considered. After obtained nonlinear frequency spectrum feature, the least square support vector machine classifier is used to fault identification. The fault diagnosis of hoisting equipment is researched, and experiments show that the proposed algorithm has the good high recognition rate that can fulfill the demand of online diagnosis.
出处 《控制与决策》 EI CSCD 北大核心 2014年第1期168-171,共4页 Control and Decision
基金 陕西省科技项目(2010K08-13)
关键词 故障诊断 非线性频谱 自适应辨识 支持向量机 fault diagnosis nonlinear spectrum adaptive identification support vector machine
  • 相关文献

参考文献10

  • 1韩海涛,曹建福,马红光,张家良.非线性输出频域响应函数的自适应辨识算法及应用[J].西安交通大学学报,2011,45(10):77-81. 被引量:6
  • 2刘本德,胡昌华.基于Volterra频域核辨识的非线性模拟电路故障诊断[J].控制与决策,2009,24(8):1167-1171. 被引量:15
  • 3Nazatul Aini Abd Majid,Mark P. Taylor,John J.J. Chen,Marco A. Stam,Albert Mulder,Brent R. Young.Aluminium process fault detection by Multiway Principal Component Analysis[J].Control Engineering Practice.2010(4) 被引量:1
  • 4Viet Ha Nguyen,Jean-Claude Golinval.Fault detection based on Kernel Principal Component Analysis[J].Engineering Structures.2010(11) 被引量:1
  • 5Chun-Chin Hsu,Mu-Chen Chen,Long-Sheng Chen.Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring[J].Expert Systems With Applications.2009(4) 被引量:1
  • 6Hao Tang,Y.H. Liao,J.Y. Cao,Hang Xie.Fault diagnosis approach based on Volterra models[J].Mechanical Systems and Signal Processing.2009(4) 被引量:1
  • 7Xiaofeng Liu,Lin Ma,Joseph Mathew.Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques[J].Mechanical Systems and Signal Processing.2008(3) 被引量:1
  • 8Peiling Cui,Junhong Li,Guizeng Wang.Improved kernel principal component analysis for fault detection[J].Expert Systems With Applications.2006(2) 被引量:1
  • 9Z. Q. Lang,S. A. Billings.Energy transfer properties of non-linear systems in the frequency domain[J].International Journal of Control.2005(5) 被引量:1
  • 10J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters.1999(3) 被引量:1

二级参考文献22

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2谢宏,何怡刚.非线性模拟动态电路故障诊断的频域方法[J].仪器仪表学报,2006,27(5):512-514. 被引量:11
  • 3殷时蓉,陈光,谢永乐.Volterra核的测量及在非线性模拟电路测试中的应用[J].控制与决策,2006,21(10):1134-1137. 被引量:10
  • 4Marcantonio C,Ada F.Soft fault detection and isolationin analog circuits:Some results and a comparison between a fuzzy approach and radial basis function networks[J].IEEE Trans on Instrumentation and Measurement,2002,51(2):196-202. 被引量:1
  • 5Yin Shi-rong,Chen Guang-ju.Nonlinear analog circuits fault diagnosis based on frequency testing[C].Int Symp on Test Automation and Instrumentation.Beijing,2006:973-976. 被引量:1
  • 6Michael Weiss,Ceri Evans,David Rees.Identification of nonlinear cascade systems using paired multi-sine signals[J].IEEE Trans on Instrumentation and Measurement,1998,47(1):332-336. 被引量:1
  • 7Nam W,Powers E J.Application of higher order spectral analysis to cubically nonlinear system identification[J].IEEE Trans on Signal Processing,1994,42(7):1746-1765. 被引量:1
  • 8Wang T H,Thomas J Brazil.Voherra-mapping-based behavioral modeling of nonlinear circuits and systems for high frequencies[J].IEEE Trans on Micro-wave Theory and Techniques,2003,51(5):1433-1440. 被引量:1
  • 9Da Yan Manohar,Naren Kumar,Pan Dian.Minimal classification method with error-correcting codes for multi-class recognition[J].Int J of Pattern Recognitionand Artificial Intelligence,2005,19(5):663-680. 被引量:1
  • 10Ramakanth Kondagunturi,Eugene Bradley,Krisiti Maggard.Benchmark circuits for analog and mixedsignal testing[C].Southeastern'99 Proc of IEEE.Kentucky,1999:217-220. 被引量:1

共引文献17

同被引文献153

引证文献10

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部