期刊文献+

非线性输出频域响应函数的自适应辨识算法及应用 被引量:6

An Adaptive Identification Algorithm of Nonlinear Output Frequency Response Functions and Its Application
下载PDF
导出
摘要 为解决非线性输出频域响应函数(NOFRF)模型用于模拟电路系统故障诊断时,传统辨识算法需多次激励计算过程耗时长的问题,提出了NOFRF的频域自适应辨识算法(NOFRF-BLMS),该算法构造了NOFRF的输入观测向量与核向量,从而可将NOFRF表示成一个伪线性结构.根据块最小均方(BLMS)原理及约束优化理论,推导出满足最小均方误差指标的NOFRF自适应辨识迭代计算公式,采用输入功率普迭代估算学习因子,由输出误差构造残差向量.NOFRF-BLMS通过在线学习方式,只需一次激励即可辨识出NOFRF,使辨识过程大幅度简化,缩短了辨识时间,具有更强的噪声抑制能力.实验结果表明,NOFRF-BLMS在相同的辨识精度下,耗时仅为传统算法的3%,且故障判断准确. A nonlinear output frequency response functions (NOFRF) frequency adaptive identification algorithm (NOFRF-BLMS) is proposed to deal with the problems that the conventional identification method of NOFRF needs multiple stimulus and costs long time when the model of NOFRF is applied to fault diagnosis of analog circuit system. Input observation vectors and kernel vectors are constructed by means of NOFRF-BLMS, which makes the model of NOFRF become a pseudo-linear combination structure. Then, NOFRF adaptive identification recursive computational formula, which satisfies the norm of least mean square error, is deduced based on block least mean square (BLMS) and constraint optimization theory. Input power is used to estimate recursive learning factors, and output error is used to construct residual error vectors. NO-FRF is identified via online learning and only one stimulus is needed in NOFRF-BLMS which simplifies the procedure of identifying dramatically and shortens the time of identifying. NOFRF- BLMS is robust to noise. Experimental results indicate that NOFRF-BLMS costs only 3% of the identifying time of the conventional method, and the faults are correctly identified.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第10期77-81,87,共6页 Journal of Xi'an Jiaotong University
基金 国家"863计划"资助项目(2008AA01Z126)
关键词 非线性输出频域响应函数 自适应辨识算法 故障诊断 nonlinear output frequency response functions adaptive identification algorithm fault diagnosis
  • 相关文献

参考文献12

  • 1MILOR L S. A tutorial introduction to research on an- alog and mixed-signal circuit testing[J]. IEEE Trans- actions on Circuits and System: II Analog and Digit- al Signal Processing, 1998, 45(10) :1389-1407. 被引量:1
  • 2SUN Yongkui, CHEN Guangju, HUI Li. Analog cir- cuits fault diagnosis using support vector machine [C] //Proceedings of International Conference on Commu- nication, Circuits and Systems. Piscataway, NJ, USA: IEEE, 2007: 1003-1006. 被引量:1
  • 3YANG Chenglin, TIAN Shulin, LONG Bing, et al. Methods of handling the tolerance and test-point selec- tion problem for analog-circuit fault diagnosis [J]. IEEE Transactions on Instrumentation and Measure- ment, 2011,60(1):1-10. 被引量:1
  • 4CHEN Yu, ZHANG Meng, WEN Xinling. Research of nonlinear dynamical system identification based on Volterra series model [C]//Proceedings of 2010 2nd International Conference on Industrial Mechatronics and Automation. Piscataway, NJ, USA: IEEE, 2010 : 435-438. 被引量:1
  • 5刘本德,胡昌华.基于Volterra频域核辨识的非线性模拟电路故障诊断[J].控制与决策,2009,24(8):1167-1171. 被引量:15
  • 6LANG Zhiqiang, BILLINGS S A. Energy transfer properties of non-linear systems in the frequency do- main [J]. International Journal of Control, 2005, 78 (5) :345-362. 被引量:1
  • 7PENG Zekai, LANG Zhiqiang, WOLTTERS C, et al. Feature extraction for damage detection in structures based on nonlinearity analysis [J]. Key Engineering Materials, 2009, 413(8):627-634. 被引量:1
  • 8LANG Zhiqiang, PENG Zikai. A novel approach for nonlinearity detection in vibrating systems[J].Journal of Sound and Vibration, 2008, 314(3/4/5):603-615. 被引量:1
  • 9CLARK G A, MITRA S K. Block implementation of adaptive digital filters [J]. IEEE Transactions on Cir- cuits and Systems, 1981, 28(6):584-592. 被引量:1
  • 10OGUNFUNMI A O, PETERSON A M.On the imple- mentation of the frequency-domain LMS adaptive filter [J]. IEEE Transactions on Circuits and Systems: II Analog and Digital Signal Processing, 1992, 39 (5): 318-322. 被引量:1

二级参考文献11

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2谢宏,何怡刚.非线性模拟动态电路故障诊断的频域方法[J].仪器仪表学报,2006,27(5):512-514. 被引量:11
  • 3殷时蓉,陈光,谢永乐.Volterra核的测量及在非线性模拟电路测试中的应用[J].控制与决策,2006,21(10):1134-1137. 被引量:10
  • 4Marcantonio C,Ada F.Soft fault detection and isolationin analog circuits:Some results and a comparison between a fuzzy approach and radial basis function networks[J].IEEE Trans on Instrumentation and Measurement,2002,51(2):196-202. 被引量:1
  • 5Yin Shi-rong,Chen Guang-ju.Nonlinear analog circuits fault diagnosis based on frequency testing[C].Int Symp on Test Automation and Instrumentation.Beijing,2006:973-976. 被引量:1
  • 6Michael Weiss,Ceri Evans,David Rees.Identification of nonlinear cascade systems using paired multi-sine signals[J].IEEE Trans on Instrumentation and Measurement,1998,47(1):332-336. 被引量:1
  • 7Nam W,Powers E J.Application of higher order spectral analysis to cubically nonlinear system identification[J].IEEE Trans on Signal Processing,1994,42(7):1746-1765. 被引量:1
  • 8Wang T H,Thomas J Brazil.Voherra-mapping-based behavioral modeling of nonlinear circuits and systems for high frequencies[J].IEEE Trans on Micro-wave Theory and Techniques,2003,51(5):1433-1440. 被引量:1
  • 9Da Yan Manohar,Naren Kumar,Pan Dian.Minimal classification method with error-correcting codes for multi-class recognition[J].Int J of Pattern Recognitionand Artificial Intelligence,2005,19(5):663-680. 被引量:1
  • 10Ramakanth Kondagunturi,Eugene Bradley,Krisiti Maggard.Benchmark circuits for analog and mixedsignal testing[C].Southeastern'99 Proc of IEEE.Kentucky,1999:217-220. 被引量:1

共引文献14

同被引文献73

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部