期刊文献+

一类Curvature方程的两种边值问题解的存在性 被引量:2

Existence of Solutions of One Kind Curvature Equation with Two Kinds of Boundary Value Conditions
下载PDF
导出
摘要 利用含有伪单调算子的变分不等式解的存在性定理,证明一类具有Dirichlet边值条件的Curvature方程在W1,p(Ω)空间中存在唯一解.深入研究具有Dirichlet边值条件的Curvature方程和具有Neumann边值条件的Curvature方程之间的关系,利用极大单调算子值域的扰动理论,给出具有Neumann边值条件的Curvature方程在W1,p(Ω)空间中存在解的充分条件.文中采用一些新的证明技巧,推广和补充了以往的相关研究成果. By using the result of the existence of solution of variational inequalities for pseudo-monotone operators, the existence and uniqueness of the curvature equation with Dirichlet boundary value conditions in W^1,p(Ω) is proved. By deeply researching the relation- ship between the curvature equation with Dirichlet boundary value conditions and the curvature equation with Neumann boundary value conditions and by using a perturbation result on the ranges for maximal monotone operators,a sufficient condition that the curvature equation with Neumann boundary value conditions has solutions in W^1,p(Ω) is proved. Some new techniques are employed in this paper, which extend or complement some corresponding results.
出处 《应用数学》 CSCD 北大核心 2014年第1期131-139,共9页 Mathematica Applicata
基金 国家自然科学基金项目(11071053) 河北省自然科学基金项目(A2010001482) 河北省教育厅科学研究重点项目资助课题(ZH2012080) 河北经贸大学科学研究重点项目(2013KYZ01)
关键词 伪单调算子 极大单调算子 值域扰动 Curvature方程 Dirichlet边值 NEUMANN边值 Pseudo-monotone operator Maximal monotone operator, Perturbations of ranges Curvature equation Diriehlet boundary Neumann boundary
  • 相关文献

参考文献2

二级参考文献22

  • 1WEI Li (School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China,Institute of Applied Mathematics and Mechanics, Ordnance Engineering College, Shijiazhuang 050003, China. ZHOU Haiyun (Institute of Applied Mathematics and Mechanics, Ordnance Engineering College, Shijiazhuang 050003, China,Institute of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050016, China..THE EXISTENCE OF SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS INVOLVING THE p-LAPLACIAN OPERATOR IN L^s-SPACES[J].Journal of Systems Science & Complexity,2005,18(4):511-521. 被引量:17
  • 2魏利,周海云.Banach空间中极大单调算子零点的迭代收敛定理及应用[J].数学的实践与认识,2006,36(5):235-242. 被引量:13
  • 3魏利.与p-Laplace算子相关的Neumann边值问题解的存在性[J].应用数学学报,2007,30(3):517-526. 被引量:2
  • 4Ambrosetti, A., Li, Y.Y., Malchiodi, A. On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann., 322:667-699 (2002) 被引量:1
  • 5Adimurthi, Yadava, S.L. Positive solution for Neumann problem with critical non-linearity on boundary. Comm. Partial Differential Equations, 16:1733-1760 (1991) 被引量:1
  • 6Bahri, A. Critical points at infinity in some variational problems. Longman Scientific & Technical, 1989 被引量:1
  • 7Beckner, W. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math., 138:213-242 (1993) 被引量:1
  • 8Cao, D., Kupper, T. On the existence of multipeaked solutions to a semilinear Neumann problem. Duke Math. J., 97:261-300 (1999) 被引量:1
  • 9Cao, D., Noussair, E.S., Yan, S. Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem. Pacific J. Math., 200:19-41 (2001) 被引量:1
  • 10Cao, D., Noussair, E.S., Yan, S. On the scalar curvature equation -△u = (1 + εK(x))u^(N+2)/(N-2) in R^N. Calc. Var. PDE., 15:403-419 (2002) 被引量:1

共引文献5

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部