期刊文献+

基于改进扩展卡尔曼滤波算法的空中目标跟踪 被引量:4

Air Target Tracking Based on Improved Extended Kalman Filtering Algorithm
下载PDF
导出
摘要 采用扩展卡尔曼滤波方法建立了雷达跟踪模型,对空中目标航迹进行滤波,为了减少雷达量测噪声的不稳定变化对系统跟踪性能的影响,对扩展卡尔曼滤波算法进行了改进,利用新息方差的计算来调整卡尔曼滤波器的增益。仿真结果表明,采用改进扩展卡尔曼滤波算法后,在雷达量测噪声发生大幅变化的情况下,经过滤波后的位置和速度误差仍然趋于稳定。表明该方法具有很好的滤波性能及跟踪精度,并可以提高空中目标航迹预测的精确性。 This paper uses extended Kalman filtering (EKF) method to set up the radar tracking model to filter the air target flight track,in order to reduce the influence of instable variation of ra- dar measurement noise on system tracking performance,improves the EKF algorithm, uses the cal- culation of innovation covariance to adjust the Kalman filter gain. The simulation results show that the position and velocity error still be stable even though the measurement noise of radars vary in a wide range after using improved EKF algorithm,which indicates that the method has excellent fil- tering performance and tracking precision,and can improve the accuracy of track prediction for air target.
出处 《舰船电子对抗》 2013年第6期34-37,共4页 Shipboard Electronic Countermeasure
关键词 改进扩展卡尔曼滤波 目标跟踪 航迹预测 滤波方差 improved extended Kalman filtering target tracking track prediction filtering variance
  • 相关文献

参考文献10

二级参考文献35

  • 1吴伟,刘兴刚,王忠实,徐心和.多传感器融合实现机器人精确定位[J].东北大学学报(自然科学版),2007,28(2):161-164. 被引量:8
  • 2王杰贵.基于DOA/多普勒信息的单站无源定位[J].火力与指挥控制,2007,32(6):87-90. 被引量:5
  • 3秦永元,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2007. 被引量:45
  • 4Siegwart R,Nourbakhsh I R.自主移动机器人导论[M].李人厚,译.西安:西安交通大学出版社,2006. 被引量:6
  • 5YAAKOV BAR-SHALOM, L! XIAORONG. Estimation and Tracking Principles, Techniques and Software [ M ]. Bos- ton : Artech House, 1992. 被引量:1
  • 6Jetto L. Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots[J]. IEEE Trans. Robotics and Automation, 1999,15(2) : 219-229. 被引量:1
  • 7Mohamed A H,Schwarz K P.Adaptive Kalman filtering for INS/GPS[J].Journal of Geodesy,1999,73(4):193-203. 被引量:1
  • 8Loebis D,Sutton R,Chudley J,et al.Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system[J].Control Engineering Practice,2004,12(12):1531-1539. 被引量:1
  • 9Sasiadek J Z.Sensor fusion[J].Annual Reviews in Control,2002,26(3):203-228. 被引量:1
  • 10Zhang S T,Wei X Y.Fuzzy adaptive Kalman filtering for DR/GPS// IEEE International Conference on Machine Learning and Cybernetics[C].[s.l.]:IEEE,2003,5:2634-2637. 被引量:1

共引文献157

同被引文献37

  • 1Vaccarella A,De Momi E,Enquobahrie A,et al.Unscented Kalman filter based sensor fusion for robust optical and electromagnetic tracking in surgical navigation[J].IEEE Trans on Instrumentation and Measurement,2013,62(7):2067-2081. 被引量:1
  • 2Song Haiyu,Yu Li,Zhang Wenan.Distributed consensus-based Kalman filtering in sensor networks with quantised communications and random sensor failures[J].IET Signal Processing,2014,8(2):107-118. 被引量:1
  • 3Hoffer N V,Coopmans C,Chen Yangquan,et al.Small low-cost unmanned aerial vehicle system identification:brief sensor survey and data quality,consistency checking,and reconstruction[C] //Proc of International Conference on Unmanned Aircraft Systems.[S.l.] :IEEE Press,2014:477-482. 被引量:1
  • 4Khwaja A,Zhang X P.Reconstruction of compressively sensed complex-valued terahertz data[C] //Proc of IEEE International Symposium on Circuits and Systems.[S.l.] :IEEE Press,2012:281-284. 被引量:1
  • 5葛磊.容积卡尔曼滤波算法研究及其在导航中的应用[D].哈尔滨:哈尔滨工程大学,2012. 被引量:1
  • 6Ienkaran Arasaratnam,Simon Haykin.Cubature Kalman Filters[J].IEEE Trans on Automatic Control,2009,54(6):1254-1269. 被引量:1
  • 7Ienkaran Arasaratnam,Simon Haykin.Cubature Kalman Smoothers[J].Automatica,2011,47:2245-2250. 被引量:1
  • 8曹意,茅旭初.基于非线性滤波和平滑相迭代的GPS定位估计算法[J].上海交通大学学报,2009,43(7):1108-1112. 被引量:7
  • 9黄漫国,樊尚春,郑德智,邢维巍.多传感器数据融合技术研究进展[J].传感器与微系统,2010,29(3):5-8. 被引量:131
  • 10唐浩.UKF应用于制导系统[J].现代防御技术,2010,38(6):66-69. 被引量:2

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部