期刊文献+

遗传算法在消圈问题中的应用

Application of genetic algorithm in graphic de-cycling circle
下载PDF
导出
摘要 利用遗传算法实现对图论中无向图的消圈。将无向图转化为二进制的染色体个体,对于出现圈的图,算法巧妙地采用关联矩阵列向量线性相关性进行判断,对含有圈的个体进行惩罚使其进入下一代的概率微小,促使算法能较快的收敛。算法在设计过程中,进行多种遗传机制的测试,在遗传的控制参数上也都适当进行调整,使其达到较为满意的结果。将该算法应用测试后表明,算法能够有效进行消圈,并输出最优解。在交通规划的实际问题中,能很好地体现其优势。 We introduce a new method de-cycling circles in an undirected graph through genetic algorithm. The method transforms an undirected graph into chromosomes of binary code. The algorithm not only uses linearly dependent column vector in incident matrix to make judgment on whether or not a graph has any circles, but also punishes the graph with circle by minimizing its chance entering into the next generation, which promotes the algorithm's convergence process as quickly as possible. The algorithm can reach satisfied results through the test of different kinds of genetic mechanisms and the proper adjustment on genetic control parameter. The test in different kinds of graphs shows that the discussed algo- rithm can de-cycle circles effectively, produce the optimized solution, and play an efficient roll in traffic-planning.
作者 刘淋
出处 《黄冈师范学院学报》 2013年第6期18-21,共4页 Journal of Huanggang Normal University
基金 福建省交通运输建设科技项目(201330)
关键词 遗传算法 无向图 消圈 genetic algorithm undirected graph de-cycling circle
  • 相关文献

参考文献10

二级参考文献17

  • 1Garey M R, Johnson D S. Compwters and intractability: a guide to the theory of NP- completeness[ M]. San Francisco: Freeman, 1979. 被引量:1
  • 2Punnim N. Decycling regular graphs[ J]. Australasian Journal of Graph and Combinatofics, 2005 (32) : 147 -162. 被引量:1
  • 3Bau S, Beineke L W, Du G-M, et al. Decycling cubes and grids[J]. Utilitas Math, 2001(59) : 129 -137. 被引量:1
  • 4Beineke L W, VandeU R C. Decycling graphs[J]. Graph Theory, 1997(25) : 59 -77. 被引量:1
  • 5Bau S, Beineke L W, Vandell R C. Decycling snakes[J]. Congr. Numer, 1998(134) : 79-87. 被引量:1
  • 6Bau S, Beineke L W. The decycling number of graphs [ J]. Australasian Journal of Graph and Combinatorics, 2002 (25) : 285 - 298. 被引量:1
  • 7BAU S,BEINEKE L W.The decycling number of graphs[J].Austral J Combin,2002,25:285-298. 被引量:1
  • 8DIESTEL R.Graph Theoy[M].New York:Springer,1997. 被引量:1
  • 9陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989.. 被引量:19
  • 10王登刚 刘迎曦 李守巨.求解不可微函数优化的一种混合遗传算法[J].东北大学学报,2001,22(1):74-77. 被引量:5

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部