摘要
提出了一种求取大规模电力系统关键特征值的Krylov-Schur方法。该方法与隐式重启Arnoldi(IRA)方法在数学上是等价的,但消除了IRA方法的数值不稳定性,且对收敛特征值的锁定容易实现,使得后续计算可以在更低阶的子空间进行,节省了计算量。借助Cayley变换将关键特征值映射为主导特征值可便于Krylov-Schur方法求解,使用增广状态矩阵进行相应的稀疏运算可提高计算效益。对2 940阶和5 727阶电力系统关键特征值的计算结果表明,所提方法高效、可靠。
An efficient method called the Krylov-Schur method for computing critical eigenvalues of large-scale power systems is proposed. The Krylov-Schur method is equivalent to implicitly restarted Arnoldi( IRA) method mathematically but offers two advantages. First,the numerical instability of the IRA algorithm is avoided. Second,it is easier to lock converged eigenvalues,by which subsequent computation can be carried out on subspaces with lower dimensions in less operations. By using Cayley transformation,the critical eigenvalues are mapped onto extreme eigenvalues for calculation by Krylov-Schur method. The sparsity of augmented state matrix is used to improve the efficiency of the algorithm. The proposed method has been tested on systems with orders of 2 940 and 5 727. The results show that Krylov-Schur method is highly efficient and reliable.
出处
《电力系统自动化》
EI
CSCD
北大核心
2014年第2期53-58,共6页
Automation of Electric Power Systems
基金
国家电网公司科技项目"风火打捆能源基地交直流外送协调控制及安全防御系统研究与示范"~~