期刊文献+

一种求取大规模电力系统关键特征值的有效方法 被引量:7

An Efficient Method for Computing Critical Eigenvalues of Large-scale Power Systems
下载PDF
导出
摘要 提出了一种求取大规模电力系统关键特征值的Krylov-Schur方法。该方法与隐式重启Arnoldi(IRA)方法在数学上是等价的,但消除了IRA方法的数值不稳定性,且对收敛特征值的锁定容易实现,使得后续计算可以在更低阶的子空间进行,节省了计算量。借助Cayley变换将关键特征值映射为主导特征值可便于Krylov-Schur方法求解,使用增广状态矩阵进行相应的稀疏运算可提高计算效益。对2 940阶和5 727阶电力系统关键特征值的计算结果表明,所提方法高效、可靠。 An efficient method called the Krylov-Schur method for computing critical eigenvalues of large-scale power systems is proposed. The Krylov-Schur method is equivalent to implicitly restarted Arnoldi( IRA) method mathematically but offers two advantages. First,the numerical instability of the IRA algorithm is avoided. Second,it is easier to lock converged eigenvalues,by which subsequent computation can be carried out on subspaces with lower dimensions in less operations. By using Cayley transformation,the critical eigenvalues are mapped onto extreme eigenvalues for calculation by Krylov-Schur method. The sparsity of augmented state matrix is used to improve the efficiency of the algorithm. The proposed method has been tested on systems with orders of 2 940 and 5 727. The results show that Krylov-Schur method is highly efficient and reliable.
出处 《电力系统自动化》 EI CSCD 北大核心 2014年第2期53-58,共6页 Automation of Electric Power Systems
基金 国家电网公司科技项目"风火打捆能源基地交直流外送协调控制及安全防御系统研究与示范"~~
关键词 电力系统 Krylov-Schur方法 Cayley变换 关键特征值 小干扰稳定性分析 power systems Krylov-Schur method Cayley transformation critical eigenvalues small-signal stability analysis
  • 相关文献

参考文献17

  • 1夏道止主编..电力系统分析 下[M].北京:水利电力出版社,1995:197.
  • 2王锡凡主编..现代电力系统分析[M].北京:科学出版社,2003:471.
  • 3杜正春,刘伟,方万良,夏道止.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法[J].西安交通大学学报,2004,38(10):995-999. 被引量:11
  • 4DU Z, LIU W, FANG W. Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method. IEEE Proceedings: Generation, Transmission and Distribution, 2005, 152(6): 913-918. 被引量:1
  • 5DU Z, LIU W, FANG W. Calculation of rightmost eigenvalues in power systems using the Jacobi-Davidson method[J]. IEEE Trans on Power Systems, 2006, 21(1) : 234-239. 被引量:1
  • 6李崇涛,崔勇,任大伟,杜正春.使用双边Jacobi-Davidson计算大规模电力系统关键模态[J].电力系统自动化,2012,36(12):7-10. 被引量:4
  • 7SORENSEN D C. Implicit application of polynomial filters in a k-step Arnoldi method[J]. SIAM Journal on Matrix Analysis and Applications, 1992, 13(1): 357-385. 被引量:1
  • 8LEHOUCQ R B, SORENSEN D C. Deflation techniques for an implicity restarted Arnoldi iteration [J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(4): 789-821. 被引量:1
  • 9STEWART G W. A Krylov-Schur algorithm for large eigenproblems[J ]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(3): 601-614. 被引量:1
  • 10PARLETT B N, LE J. Forward instability of traditional QR . SIAM Journal on Matrix Analysis and Applications, 1993, 14(1): 279-316. 被引量:1

二级参考文献41

  • 1杜正春,刘伟,方万良,夏道止.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法[J].西安交通大学学报,2004,38(10):995-999. 被引量:11
  • 2杜正春,刘伟,方万良,夏道止.小干扰稳定性分析中一种关键特征值计算的稀疏实现[J].中国电机工程学报,2005,25(2):17-21. 被引量:39
  • 3方思立.提高PSS的投入率增强电力系统动态稳定[J].电网技术,1996,20(9):9-12. 被引量:3
  • 4BYERLY R T, BENON R J, SHERMAN D E. Eigenvalue analysis of synchronizing power flow oscillations in large electric power systems [J]. IEEE Trans on Power Apparatus and Systems, 1982, 101(1): 235-243. 被引量:1
  • 5SAUER P W, RAJAGOPALAN C, PAl M P. An explanation and generalization of the AESOPS and PEALS algorithms[J]. IEEE Trans on Power Systems, 1991, 6(1):293-299. 被引量:1
  • 6PEREZ-ARRIAGA I J, VERGHESE G C, SCHWEPPE F C. Selective modal analysis with applications to electric power systems[J]. IEEE Trans on Power Apparatus and Systems, 1982, 101(9): 3117-3134. 被引量:1
  • 7LEE B, SONG H, KWON S H, et al. Calculation of rightmost eigenvalues in power systems using the block (BACM) Arnoldi Chebyshev method[J]. IEE Proceedings : Generation, Transmission and Distribution, 2003, 150(1): 23-27. 被引量:1
  • 8DU Z, LIU W, FANG W. Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method[J].lEE Proceedings: Generation, Transmission and Distribution, 2005, 152(6): 913-918. 被引量:1
  • 9DU Z, LIU W, FANG W. Calculation of rghtmost eigenvalues in power systems using the Jacobi-Davidson method [J]. IEEETransonPower Systems, 2006, 21(1), 234-239. 被引量:1
  • 10TSAI S H, LEE C Y, WU Y K. Efficient calculation of critical eigenvalues in large power systems using the real variant of the Jacobi-Davidson QR method[J]. IET Generation Transmission and Distribution, 2010, 4(4), 467-478. 被引量:1

共引文献78

同被引文献80

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部