期刊文献+

使用双边Jacobi-Davidson计算大规模电力系统关键模态 被引量:4

Calculation of Critical Modes of Large-scale Power Systems Using Two-sided Jacobi-Davidson Method
下载PDF
导出
摘要 介绍了求取大规模电力系统关键模态的双边Jacobi-Davidson(TSJD)方法。该方法具有灵活的特征值选择策略,而且在求得特征值的同时可以收敛到其左右特征向量,从而能够直接分析所关心的模态。文中给出了该算法的计算流程,以及提高算法计算效率的措施。最后采用2 940阶和29 548阶电力系统状态矩阵对该方法进行测试。测试结果表明该方法是高效和可靠的,可以用于实际大规模系统的关键模态计算。 This paper describes the two-sided Jacobi-Davidson (TSJD) method to compute the critical modes of large scale power systems. The selection strategy of eigenvalues is flexible in the proposed method. It converges to right and left eigenvectors as well as eigenvalues which can he used directly for modal analysis. The flow of TSJD method is described and measures to improve computing efficiency are given. TSJD method is applied to the power system state matrices with orders of 2 940 and 29 548. The results show that TSJD method is reliable and efficient. It can be used to compute critical modes of practical large scale power systems.
出处 《电力系统自动化》 EI CSCD 北大核心 2012年第12期7-10,48,共5页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(50877060)~~
关键词 电力系统 双边Jacobi-Davidson 关键模态 小干扰稳定分析 特征值计算 power system two-sided Jacobi-Davidson critical mode small-signal stability analysis eigenvalue calculation
  • 相关文献

参考文献18

  • 1夏道止主编..电力系统分析 下[M].北京:水利电力出版社,1995:197.
  • 2王锡凡主编..现代电力系统分析[M].北京:科学出版社,2003:471.
  • 3BYERLY R T, BENON R J, SHERMAN D E. Eigenvalue analysis of synchronizing power flow oscillations in large electric power systems [J]. IEEE Trans on Power Apparatus and Systems, 1982, 101(1): 235-243. 被引量:1
  • 4SAUER P W, RAJAGOPALAN C, PAl M P. An explanation and generalization of the AESOPS and PEALS algorithms[J]. IEEE Trans on Power Systems, 1991, 6(1):293-299. 被引量:1
  • 5PEREZ-ARRIAGA I J, VERGHESE G C, SCHWEPPE F C. Selective modal analysis with applications to electric power systems[J]. IEEE Trans on Power Apparatus and Systems, 1982, 101(9): 3117-3134. 被引量:1
  • 6谷寒雨,陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报,2000,20(9):40-54. 被引量:48
  • 7LEE B, SONG H, KWON S H, et al. Calculation of rightmost eigenvalues in power systems using the block (BACM) Arnoldi Chebyshev method[J]. IEE Proceedings : Generation, Transmission and Distribution, 2003, 150(1): 23-27. 被引量:1
  • 8杜正春,刘伟,方万良,夏道止.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法[J].西安交通大学学报,2004,38(10):995-999. 被引量:11
  • 9DU Z, LIU W, FANG W. Calculation of electromechanical oscillation modes in large power systems using Jacobi-Davidson method[J].lEE Proceedings: Generation, Transmission and Distribution, 2005, 152(6): 913-918. 被引量:1
  • 10DU Z, LIU W, FANG W. Calculation of rghtmost eigenvalues in power systems using the Jacobi-Davidson method [J]. IEEETransonPower Systems, 2006, 21(1), 234-239. 被引量:1

二级参考文献26

  • 1方思立.提高PSS的投入率增强电力系统动态稳定[J].电网技术,1996,20(9):9-12. 被引量:3
  • 2Wang L, Semlyen A. Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems[J]. IEEE.Transactions on Power Systems, 1990, 5(2): 635-642. 被引量:1
  • 3Campagnolo J M, Martins N, Falcao D M. Refactored bi-iteration:a high performance eigensolution method for large power system matrices[J]. IEEE Transactions on Power Systems, 1996, 11(3):1228-1235. 被引量:1
  • 4Lee B, Song H, Kwon S H, Kim D, Iba K. Calculation of rightmost eigenvalues in power systems using the block (BACM) Amoldi Chebyshev Method[J]. Generation, Transmission and Distribution,IEE Proceedings, 2003, 150(l), 23-27. 被引量:1
  • 5Golub G H, Van Loan C F. Matrix computations, Third Edition[M]. The Johns Hopkins University Press, 1996. 被引量:1
  • 6Kunder E Power system stability and control[M]. New York:McGraw-Hill Publishing Company, 1994. 被引量:1
  • 7Perez-Arriaga I J, Verghese G C, Schweppe F C. Selective modal analysis with applications to electric power systems, part Ⅰ heuristic introduction, part Ⅱ: the dynamic stability problem[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(9):3117-3134. 被引量:1
  • 8Sauer PW, Rajagopalan C, Pai M P. An explanation and generalization of the aesops and peals algorithms[J]. IEEE Transactions on Power Systems, 1991, 6(1): 293-299. 被引量:1
  • 9Uchida N, Nagao T. A new eigen-analysis method of steady-state stability studies for large power systems: S Matrix Method[J]. IEEE Transactions on Power Systems, 1988, 3(2): 706-714. 被引量:1
  • 10Mori H, Kanno J, Tsuzuld S. A sparsity-oricnted te, chniquc for power system small signal stability analysis with a precondition conjugate residual method[J]. IEEE Transactions on Power Systems, 1993, 8(3):1150-1158. 被引量:1

共引文献77

同被引文献54

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部