期刊文献+

改进的细菌觅食算法求解TSP问题 被引量:9

An improved bacterial foraging algorithm for the traveling salesman problem
下载PDF
导出
摘要 为了获得TSP问题的更优解,在求解TSP问题的细菌觅食算法基础上,通过在每次迭代中的趋向性操作之前,用淘汰选择和最优保持操作选择出当代的样本集并为其中的细菌做标记,提出了一种改进的细菌觅食搜索算法。之后对美国中部的10个城市以及Oliver的前30个和前50个城市的数据进行仿真,仿真结果表明,该算法求得的解比其他相应文献中算法求得的解更优,且该算法更容易收敛于最优解。因此,改进后的细菌觅食算法用来求解TSP问题是有效且可行的。 In order to get more optimal solution of traveling salesman problem (TSP), based on essential bacterial foraging algorithm for solving TSP, this paper proposes an improved bacterial fora- ging algorithm. In this algorithm, a sample set is chosen by sieve selection and optimal maintaining operation before carrying on chemotaxis operation in every generation, and then the bacterium is marked. In the experiment, 10 cities in middle America and the first 30 cities in Oliver were cho- sen. Experimental results show that the proposed algorithm can achieve better results than other algorithms, and the proposed algorithm is also easier to converge. Thus, the the improved bacterial foraging algorithm used to solve TSP problem is effective and feasible.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2013年第6期1436-1443,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61100164 61173190) 教育部留学回国人员科研启动基金资助项目(教外司留[2012]1707号) 陕西省自然科学基础研究计划青年基金资助项目(2010JQ8034)
关键词 旅行商问题 细菌觅食算法 淘汰选择 样本集 标记细菌 traveling salesman problem bacterial foraging algorithm sieve selection sample set labeled bacteria
  • 相关文献

参考文献16

  • 1雷秀娟.群智能优化算法及其应用[M]{H}北京:科学出版社,201270-73. 被引量:1
  • 2翁武熙..混合蚁群算法求解TSP问题[D].广西大学,2012:
  • 3DAS S,BISWAS A,DASGUPTA S. Bacterial foraging optimization algorithm:Theoretical foundations,analysis and application[J].Foundations of Comput Intel,2009,(03):23-55. 被引量:1
  • 4DASGUPTA S,DAS S,ABRAHAM A. Adaptive computational chemotaxis in bacterial foraging optimization:An analysis[J].{H}IEEE Transactions on Evolutionary Computation,2009,(04):919-941. 被引量:1
  • 5DAS S,DASGUPTA S,BISWAS A. On stability of the chemotactic dynamics in bacterial foraging optimization algorithm[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2009,(03):670-679. 被引量:1
  • 6DATTA T,MISRA I S,MANGARAJ B B. Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence[J].Progress in Electrometics Research C,2008.14-157. 被引量:1
  • 7WU C,ZHANG N,JIANG J. Improved bacterial foraging algorithms and their applications to job shop scheduling problems[A].Warsaw,Poland,2007.562-569. 被引量:1
  • 8张娜..细菌觅食优化算法求解车间调度问题的研究[D].吉林大学,2007:
  • 9BISWAS A,DASGUPTA S,DAS S. Synergy of PSO and bacterial foraging optimization:a comparative study on numerical benchmarks[A].Gemany:Springs,2007.255-263. 被引量:1
  • 10KIM D H,ABRAHAM A,CHO J H. A hybrid genetic algorithm and bacterial foraging approach[J].Chinese Institute of Industrial Engineers,2006,(03):185-191. 被引量:1

二级参考文献61

  • 1邓娟,陈莘萌.一种基于最大相似性的TSP问题求解算法[J].计算机工程,2004,30(17):1-2. 被引量:12
  • 2Kim D H,Cho C H.Bacterial foraging based neural network fuzzy learning[C] //IICAI 2005,2005:2030-2036. 被引量:1
  • 3Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis[C] /International Conference on Computational Intelligonce and Multimedia Applications.Los Alamitos:IEEE Press,2007:527-531. 被引量:1
  • 4Dasgupta S,Biswas A,Das S,et al.Automatic circle detection on images with an adaptive bacterial foraging algorithmiC] //2008 Genetic and Evolutionary Computation Conference(GECCO 2008),2008:1695-1696. 被引量:1
  • 5Chen H,Zhu Y,Hu K.Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning[J].Applied Soft Computing,2010,10:539-547. 被引量:1
  • 6Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22:52-67. 被引量:1
  • 7Berg H.Motile behavior of bacteria[J].Phys Today,2000,53(1):24-29. 被引量:1
  • 8Berg H C,Brown D A.Chemotaxis in escherichia coli analyzed by three-dimensional tracking[J].Nature,1972,239:500-504. 被引量:1
  • 9Das S,Biswas A,Dasgupta S,et al.Bacterial foraging optimization algorithm:Theoretical foundations,analysis,and applications[J].Foundations of Comput Intel,2009,3:23-55. 被引量:1
  • 10Liu Y,Passino K M.Biomimicry of social foraging bacteria for distributed optimization:Models,principles,and emergent behaviors[J].J Optimization Theory Applicat,2002,115(3):603-628. 被引量:1

共引文献164

同被引文献116

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部